331
Views
0
CrossRef citations to date
0
Altmetric
Articles

From Stress to Success: Harnessing Technological Advancements to Overcome Climate Change Impacts in Citriculture

, , & ORCID Icon

References

  • Abobatta, W. 2019. Potential impacts of global climate change on citrus cultivation. MOJ Ecol. Environ. Sci 4:308–312.
  • Abobatta, W. F. 2021. Managing citrus orchards under climate change. MOJ Eco Environ. Sci. 6:43–44. doi:10.15406/mojes.2021.06.00212
  • Abobatta, W. F., and Khalifa, S. M. 2019. Influence of hydrogel composites soil conditioner on navel orange growth and productivity. J. Agri. Hortic. Res. 2:1–6.
  • Abouzari, A., Solouki, M., Golein, B., Fakheri, B. A., and Sabouri, A. 2020. The change trend in physiological traits of 110 citrus accessions in response to cold stress. Bangladesh J. Bot. 49:375–385. doi:10.3329/bjb.v49i2.49319
  • Abu Nayyer, M., Siddiqui, M., and Barman, K. 2014. Quality of fruits in the changing climate. In Climate Dynamics in Horticultural Science, Choudhary, M. L., Patel, V. B., Siddiqui, M. W., Mahdl, S. S. and Verma, R. B., Eds. Apple Academic Press, Pleasant, NJ, p 16.
  • Ainsworth, E. A., and Bush, D. R. 2011. Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 155:64–69. doi:10.1104/pp.110.167684
  • Al-Humaid, A. I., and Moftah, A. E. 2007. Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. J. Plant Nutr. 30:53–66. doi:10.1080/01904160601054973
  • Al-Yassin, A. 2004. Influence of salinity on citrus. J. Cent. Eur. Agric. 5:263–272.
  • Ali, A., and Imran, M. 2021. Remotely sensed real-time quantification of biophysical and biochemical traits of Citrus (Citrus sinensis L.) fruit orchards – A review. Sci. Hortic. 282:110024. doi:10.1016/j.scienta.2021.110024
  • Allen, L. H., and Vu, J. C. V. 2009. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149:820–830. doi:10.1016/j.agrformet.2008.11.002
  • Alquézar, B., Rodrigo, M., and Zacarías, L. 2008. Carotenoid biosynthesis and their regulation in citrus fruits. Tree for. Sci. Biotech. 2:23–37.
  • Appiah, S. A., Li, J., Lan, Y., Darko, R. O., Alordzinu, K. E., Al Aasmi, A., Asenso, E., Issaka, F., Afful, E. A., Wang, H., and Qiao, S. 2022. Real-time assessment of mandarin crop water stress index. Sensors 22:4018. doi:10.3390/s22114018
  • Arbona, V., Iglesias, D. J., Jacas, J., Primo-Millo, E., Talon, M., and Gómez-Cadenas, A. 2005. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73–82. doi:10.1007/s11104-004-1160-0
  • Arbona, V., López-Climent, M. F., Pérez-Clemente, R. M., and Gómez-Cadenas, A. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Exp. Bot. 66:135–142. doi:10.1016/j.envexpbot.2008.12.011
  • Aru, A. 1996. The Rio Santa Lucia site: An integrated study of desertification. In Mediterranean Desertification and Land Use; Brandt, C.J., Thornes, J.B., Eds., John Wiley and Sons: Chichester, pp. 189.
  • Ashour, E., and Al-Najar, H. 2012. The impact of climate change and soil salinity in irrigation water demand in the Gaza strip. J. Earth Sci. Clim. Change 3. doi:10.4172/2157-7617.1000120
  • Augé, R. M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097
  • Bae, J. H., Bae, H. J., Park, E. S., Cho, B. K., and Kim, G. W. 2020. Development of unmanned aerial vehicle remote sensing technology for abiotic stress monitoring of citrus ‘Unshiu’using multispectral imaging. J. Korean Soc. Nondestr. Test. 40:274–284. doi:10.7779/JKSNT.2020.40.4.274
  • Balfagón, D., Arbona, V., and Gómez-Cadenas, A. 2022. The future of citrus fruit: The impact of climate change on citriculture. Metode Sci. Stud. J. 12:123–129.
  • Baradas, M. W., Blad, B. L., and Rosenberg, N. J. 1976. Reflectant induced modification of soybean canopy radiation balance v. longwave radiation balance1. Agron. J 68:848–852. doi:10.2134/agronj1976.00021962006800060003x
  • Basile, B., Rouphael, Y., Colla, G., Soppelsa, S., and Andreotti, C. 2020. Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Sci. Hortic. 267:109330. doi:10.1016/j.scienta.2020.109330
  • Bita, C., and Gerats, T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4:273. doi:10.3389/fpls.2013.00273
  • Bulgari, R., Franzoni, G., and Ferrante, A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. doi:10.3390/agronomy9060306
  • Choudhury, F. K., Rivero, R. M., Blumwald, E., and Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90:856–867. doi:10.1111/tpj.13299
  • Choudhury, R., Hazarika, S., and Sarma, U. 2019. Detection of water stress in Khasi Mandarin orange plants from volatile organic compound emission profile implementing electronic nose. Int. J. Eng. Adv. Technol. 9:133–137. doi:10.35940/ijeat.A1086.109119
  • Colaço, A. F., Pagliuca, L. G., Romanelli, T. L., and Molin, J. P. 2020. Economic viability, energy and nutrient balances of site-specific fertilisation for citrus. Biosyst. Eng. 200:138–156. doi:10.1016/j.biosystemseng.2020.09.007
  • Cui, S., Ling, P., Zhu, H., and Keener, H. M. 2018. Plant pest detection using an artificial nose system: A review. Sensors 18:378. doi:10.3390/s18020378
  • Del Buono, D. 2021. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 751:141763. doi:10.1016/j.scitotenv.2020.141763
  • Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39:474–482. doi:10.1093/oxfordjournals.pcp.a029394
  • Demmig, B., and Björkman, O. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171–184. doi:10.1007/BF00391092
  • Duan, J., Liu, Y. J., Yang, J., Tang, C. J., and Shi, Z. H. 2020. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 582:124290–124290. doi:10.1016/j.jhydrol.2019.124290
  • Dutta, S. K., Gurung, G., Yadav, A., Laha, R., and Mishra, V. K. 2022. Factors associated with citrus fruit abscission and management strategies developed so far: a review. N. Z. J. Crop Hortic. Sci. 1–22. doi:10.1080/01140671.2022.2040545
  • Fan, J., Zhang, Y., Wen, W., Gu, S., Lu, X., and Guo, X. 2021. The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. J. Clean. Prod. 280:123651. doi:10.1016/j.jclepro.2020.123651
  • Fares, A., Bayabil, H. K., Zekri, M., Mattos, D., Jr,., and Awal, R. 2017. Potential climate change impacts on citrus water requirement across major producing areas in the world. J. Water Clim. Change 8:576–592. doi:10.2166/wcc.2017.182
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. 2009. Plant drought stress: effects, mechanisms and management. Sustain. Agric. 29:153–188.
  • Ferguson, L., and Grattan, S. R. 2005. How salinity damages citrus: Osmotic effects and specific ion toxicities. HortTechnology 15:95–99. doi:10.21273/HORTTECH.15.1.0095
  • Fischer, G., Tubiello, F. N., Van Velthuizen, H., and Wiberg, D. A. 2007. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74:1083–1107. doi:10.1016/j.techfore.2006.05.021
  • Fouad Abobatta, W. 2019a. Influence of climate change on citrus growth and productivity (effect of temperature). Adv. Agri. Tech. Plant Sci. 2019:180036.
  • Fouad Abobatta, W. 2019b. Management of alternative bearing in citrus varieties-review. Adv. Agri. Tech. Plant Sci. 2019:180028–180028.
  • Garcia-Franco, N., Wiesmeier, M., Colocho Hurtarte, L. C., Fella, F., Martínez-Mena, M., Almagro, M., Martínez, E. G., and Kögel-Knabner, I. 2021. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil Tillage Res. 213:105129. doi:10.1016/j.still.2021.105129
  • García-Luis, A., Duarte, A. M. M., Porras, I., García-Lidón, A., and Guardiola, J. L. 1994. Fruit splitting in ‘Nova’ hybrid mandarin in relation to the anatomy of the fruit and fruit set treatments. Sci. Hortic. 57:215–231. doi:10.1016/0304-4238(94)90142-2
  • García-Sánchez, F., Syvertsen, J. P., Gimeno, V., Botía, P., and Perez-Perez, J. G. 2007. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 130:532–542. doi:10.1111/j.1399-3054.2007.00925.x
  • Gerhards, M., Schlerf, M., Mallick, K., and Udelhoven, T. 2019. Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 11:1240–1240. doi:10.3390/rs11101240
  • Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., and Goodess, C. M. 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Change 68:209–224. doi:10.1016/j.gloplacha.2009.06.001
  • Gimeno, V., Syvertsen, J. P., Simon, I., Martinez, V., Camara-Zapata, J. M., Nieves, M., and Garcia-Sanchez, F. 2012. Interstock of ‘Valencia’ orange affects the flooding tolerance in ‘Verna’ lemon trees. HortScience 47:403–409. doi:10.21273/HORTSCI.47.3.403
  • Ginestar, C., and Castel, J. R. 1996. Responses of young Clementine citrus trees to water stress during different phenological periods. J. Horti. Sci. 71:551–559. doi:10.1080/14620316.1996.11515435
  • Glenn, D. M., Puterka, G., Vanderzwet, T., Byers, R., and Feldhake, C. 1999. Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol. 92:759–771. doi:10.1093/jee/92.4.759
  • Glenn, D. M., Puterka, G. J., Drake, S. R., Unruh, T. R., Knight, A. L., Baherle, P., Prado, E., and Baugher, T. A. 2001. Particle film application influences apple leaf physiology, fruit yield, and fruit quality. J. Am. Soc. Horticul. Sci. 126:175–181. doi:10.21273/JASHS.126.2.175
  • Glenn, D. M., and Tabb, A. 2019. Evaluation of five methods to measure normalized difference vegetation index (NDVI) in apple and citrus. Int. J. Fruit Sci. 19:191–210. doi:10.1080/15538362.2018.1502720
  • Gomez-Cadenas, A., Tadeo, F. R., Talon, M., and Primo-Millo, E. 1996. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 112:401–408. doi:10.1104/pp.112.1.401
  • Grattan, S. R., Díaz, F. J., Pedrero, F., and Vivaldi, G. A. 2015. Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions. Agric. Water Manage. 157:48–58. doi:10.1016/j.agwat.2015.01.002
  • Grattan, S. R., and Grieve, C. M. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 38:275–300. doi:10.1016/0167-8809(92)90151-Z
  • Habibzadeh, Y., Pirzad, A., Zardashti, M. R., Jalilian, J., and Eini, O. 2013. Effects of arbuscular mycorrhizal fungi on seed and protein yield under water‐deficit stress in mung bean. Agron. J. 105:79–84. doi:10.2134/agronj2012.0069
  • Hatfield, J. L., and Prueger, J. H. 2015. Temperature extremes: Effect on plant growth and development. Weather Clim. Extreme 10:4–10. doi:10.1016/j.wace.2015.08.001
  • He, M., He, C.-Q., and Ding, N.-Z. 2018. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9:1771. doi:10.3389/fpls.2018.01771
  • Holland, N., Menezes, H. C., and Lafuente, M. A T. 2002. Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25:181–191. doi:10.1016/S0925-5214(01)00182-X
  • Holopainen, J. K., and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15:176–184. doi:10.1016/j.tplants.2010.01.006
  • Howie, H., and Lloyd, J. 1989. Response of orchard 'Washington Navel’ orange, Citrus sinensis (L.) Osbeck, to saline irrigation water. II. Flowering, fruit set and fruit growth. Aust. J. Agric. Res. 40:371–371. doi:10.1071/AR9890371
  • Idso, S., and Kimball, B. 1997. Effects of long‐term atmospheric CO2 enrichment on the growth and fruit production of sour orange trees. Glob. Chang. Biol. 3:89–96. doi:10.1046/j.1365-2486.1997.00053.x
  • Idso, S. B., and Kimball, B. A. 1992. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees 1. Plant Physiol. 99:341–343. doi:10.1104/pp.99.1.341
  • Idso, S. B., and Kimball, B. A. 2001. CO2 enrichment of sour orange trees: 13 years and counting. Environ. Exp. Bot. 46:147–153. doi:10.1016/S0098-8472(01)00093-4
  • Iglesias, D. J., Cercós, M., Colmenero-Flores, J. M., Naranjo, M. A., Ríos, G., Carrera, E., Ruiz-Rivero, O., Lliso, I., Morillon, R., Tadeo, F. R., and Talon, M. 2007. Physiology of citrus fruiting. Braz. J. Plant Physiol. 19:333–362. doi:10.1590/S1677-04202007000400006
  • Inch, S., Stover, E., Driggers, R., and Lee, R. F. 2014. Freeze response of citrus and citrus-related genotypes in a florida field planting. HortScience 49:1010–1016. doi:10.21273/HORTSCI.49.8.1010
  • Jamshidi, S., Zand-Parsa, S., and Niyogi, D. 2021. Assessing crop water stress index of citrus using in-situ measurements, landsat, and sentinel-2 data. Int. J. Remote Sens. 42:1893–1916. doi:10.1080/01431161.2020.1846224
  • Jia-Dong, H., Tao, D., Hui-Hui, W., Zou, Y. N., Wu, Q. S., and Kamil, K. 2019. Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci. Hortic. 243:64–69. doi:10.1016/j.scienta.2018.08.010
  • Jiang, Q., Ye, J., Zhu, K., Wu, F., Chai, L., Xu, Q., and Deng, X. 2022. Transcriptome and co-expression network analyses provide insights into fruit shading that enhances carotenoid accumulation in pomelo (Citrus grandis). Hortic. Plant J. 8:423–434. doi:10.1016/j.hpj.2022.01.007
  • Jifon, J. L., and Syvertsen, J. P. 2003. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 23:119–127. doi:10.1093/treephys/23.2.119
  • Kathi, S., Simpson, C., Umphres, A., and Schuster, G. 2021. Cornstarch-based, biodegradable superabsorbent polymer to improve water retention, reduce nitrate leaching, and result in improved tomato growth and development. HortScience 56:1486–1493. doi:10.21273/HORTSCI16089-21
  • Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., and Yano, M. 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 134:824–837. doi:10.1104/pp.103.031104
  • Kerchev, P., van der Meer, T., Sujeeth, N., Verlee, A., Stevens, C. V., Van Breusegem, F., and Gechev, T. 2020. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 40:107503. doi:10.1016/j.biotechadv.2019.107503
  • Khalid, M. S. 2018. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20:647–654. doi:10.17957/IJAB/15.0534
  • Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20:1419–1444. doi:10.1175/JCLI4066.1
  • Khurshid, T., and Hutton, R. J. 2005. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. Acta Hortic. 694:265–269. doi:10.17660/ActaHortic.2005.694.43
  • Kim, M., Yun, S. K., Kim, S. S., Park, Y., Joa, J., Han, S., Shin, K., and Song, K. J. 2021. Response of citrus to freezing tolerance differs depending on genotypes and growing conditions. Hortic. Environ. Biotechnol. 62:181–189. doi:10.1007/s13580-020-00311-0
  • Kimball, B. A., Idso, S. B., Johnson, S., and Rillig, M. C. 2007. Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biol. 13:2171–2183. doi:10.1111/j.1365-2486.2007.01430.x
  • Koch, K. E., Allen, L. H., Jones, P., and Avigne, W. T. 1987. Growth of Citrus Rootstock (Carrizo Citrange) Seedlings During and After Long-term CO2 Enrichment. J. Amer. Soc. Hort. Sci. 112:77–82. doi:10.21273/JASHS.112.1.77
  • Kozlowski, T. T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. 17:490–490. doi:10.1093/treephys/17.7.490
  • Kumar, K. R., Sahai, A., Kumar, K. K., Patwardhan, S., Mishra, P., Revadekar, J., Kamala, K., and Pant, G. 2006. High-resolution climate change scenarios for India for the 21st century. Curr. Sci. 90:334–345.
  • Kumar, N., Poddar, A., Shankar, V., Ojha, C. S. P., and Adeloye, A. J. 2020. Crop water stress index for scheduling irrigation of Indian mustard (Brassica juncea) based on water use efficiency considerations. J. Agro. Crop Sci. 206:148–159. doi:10.1111/jac.12371
  • Ladaniya, M. 2023. Impact of climate change and COVID-19 pandemic on citrus industry. In Citrus Fruit; Ladaniya, M. Ed., 2nd ed., Academic Press, pp. 763–789.
  • Lado, J., Alós, E., Manzi, M., Cronje, P. J. R., Gómez-Cadenas, A., Rodrigo, M. J., and Zacarías, L. 2019. Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits. Front. Plant Sci. 10:1288–1288. doi:10.3389/fpls.2019.01288
  • Lamichhane, J. R. 2021. Rising risks of late-spring frosts in a changing climate. Nat. Clim. Change 11:554–555. doi:10.1038/s41558-021-01090-x
  • Lichtenthaler, H. K., and Burkart, S. 1999. Photosynthesis and high light stress. Bulg. J. Plant Physiol. 25:3–16.
  • Lin, W., Li, Y., Du, S., Zheng, Y., Gao, J., and Sun, T. 2019. Effect of dust deposition on spectrum-based estimation of leaf water content in urban plant. Ecol. Indic. 104:41–47. doi:10.1016/j.ecolind.2019.04.074
  • Liu, Y., Heying, E., and Tanumihardjo, S. A. 2012. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. Food Saf. 11:530–545. doi:10.1111/j.1541-4337.2012.00201.x
  • Lobell, D. B., Field, C. B., Cahill, K. N., and Bonfils, C. 2006. Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 141:208–218. doi:10.1016/j.agrformet.2006.10.006
  • Long, S. P., Humphries, S., and Falkowski, P. G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:633–662. doi:10.1146/annurev.pp.45.060194.003221
  • Maas, E. V., and Hoffman, G. J. 1977. Crop salt tolerance—Current assessment. J. Irrig. and Drain. Div. 103:115–134. doi:10.1061/JRCEA4.0001137
  • Mahinroosta, M., Farsangi, Z. J., Allahverdi, A., and Shakoori, Z. 2018. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater. Today Chem. 8:42–55. doi:10.1016/j.mtchem.2018.02.004
  • Makinde, A. A., Afolayan, S. O., Olaniyan, A. A., Odeleye, O. M. O., and Okafor, B. N. 2011. Effect of climate on citrus yield in rainforest-savanna transitional zone of Nigeria. J. Agric. Biol. Sci. 2:10–13.
  • Malhotra, S., and Srivastva, A. 2014. Climate smart horticulture for addressing food, nutritional security and climate challenges. Shodh Chintan-Scientific Articles, by Srivastava AK et al., ASM Foundation, New Delhi, pp 83–97.
  • Manja, K., and Aoun, M. 2019. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 246:110–122. doi:10.1016/j.scienta.2018.10.050
  • Martin, C. A., Stutz, J. C., Kimball, B. A., Idso, S. B., and Akey, D. H. 1995. Growth and topological changes of Citrus limon (L.) Burm. f. `Eureka’ in response to high temperatures and elevated atmospheric carbon dioxide. J. Am. Soc. Horticul. Sci. 120:1025–1031. doi:10.21273/JASHS.120.6.1025
  • Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H., and Khan, M. N. 2016. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 483–490. doi:10.17660/ActaHortic.2016.1120.74
  • Mesejo, C., Gambetta, G., Gravina, A., Martinez-Fuentes, A., Reig, C., and Agusti, M. 2012. Relationship between soil temperature and fruit colour development of ‘Clemenpons’ Clementine mandarin (Citrus clementina Hort ex. Tan). J. Sci. Food Agric. 92:520–525. doi:10.1002/jsfa.4600
  • Michalik, R., and Wandzik, I. 2020. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers 12:2425. doi:10.3390/polym12102425
  • Miller, W., Schumann, A., Whitney, J., and Buchanon, S. 2005. Variable rate applications of granular fertilizer for citrus test plots. Appl. Eng. Agric. 21:795–801.
  • Mira-García, A. B., Conejero, W., Vera, J., and Ruiz-Sánchez, M. C. 2020. Leaf water relations in lime trees grown under shade netting and open-air. Plants 9:510. doi:10.3390/plants9040510
  • Mittler, R. 2017. ROS Are Good. Trends Plant Sci. 22:11–19. doi:10.1016/j.tplants.2016.08.002
  • Modica, G., Messina, G., De Luca, G., Fiozzo, V., and Praticò, S. 2020. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. 175:105500. doi:10.1016/j.compag.2020.105500
  • Morinaga, K., Sumikawa, O., Kawamoto, O., Yoshikawa, H., Nakao, S., Shimazaki, M., Kusaba, S.-N.-S., and Hoshi, N. 2005. New technologies and systems for high quality citrus fruit production, labor-saving and orchard construction in mountain areas of Japan. J. Mt. Sci. 2:59–67. doi:10.1007/s11629-005-0059-4
  • Muhammad Bilal, H., Zulfiqar, R., Adnan, M., Shakeeb Umer, M., Islam, H., Zaheer, H., Mohsin Abbas, W., Fateen Haider, P., Ikhlaq Ahmad, R., and Haider, F. 2020. Impact of salinity on citrus production: A review. Int. J. Appl. Res. 6:173–176.
  • Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H., and Wang, D. 2020. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int. J. Biol. Macromol. 154:683–697. doi:10.1016/j.ijbiomac.2020.03.128
  • Narjary, B., Aggarwal, P., Kumar, S., and Meena, M. 2013. Significance of hydrogel and its application in agriculture. Indian Farming 62:15–17.
  • Nawaz, R., Abbasi, N. A., Ahmad Hafiz, I., Khalid, A., Ahmad, T., and Aftab, M. 2019. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology 08:06.
  • Nawaz, R., Abbasi, N. A., Hafiz, I. A., and Khalid, A. 2020. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260:108868–108868. doi:10.1016/j.scienta.2019.108868
  • Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A., and Ahmad, T. 2018. Economic Analysis of Citrus (Kinnow mandarin) during On-Year and Off-Year in the Punjab Province, Pakistan. J. Hortic. 05:2376–3354. doi:10.4172/2376-0354.1000250
  • Neves, D. M., Santana-Vieira, D. D. S., Dória, M. S., Freschi, L., Ferreira, C. F., Soares Filho, W. D. S., Costa, M. G. C., Coelho Filho, M. A., Micheli, F., and Gesteira, A. D. S. 2018. Recurrent water deficit causes alterations in the profile of redox proteins in citrus plants. Plant Physiol. Biochem. 132:497–507. doi:10.1016/j.plaphy.2018.09.035
  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., 2014. Sokona. Y., Stavins, R., Stocker, T.F., Tschakert, P., van Vuuren, D., and van Ypserle, J. P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, EPIC3Geneva, Switzerland, p 151.
  • Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., 2007. Climate change 2007: impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: Cambridge, UK.
  • Pattanaaik, S. K., Singh, B., Wangchu, L., Debnath, P., Hazarika, B. N., and Pandey, A. K. 2015. Effect of hydrogel on water and nutrient management of Citrus limon. Int. J. Agric. Innov. Res 3:155–1558.
  • Pereira, F. F. S., Sánchez-Román, R. M., and Orellana González, A. M. G. 2017. Simulation model of the growth of sweet orange (Citrus sinensis L. Osbeck) cv. Natal in response to climate change. Clim. Change 143:101–113. doi:10.1007/s10584-017-1986-0
  • Peres, D. J., and Cancelliere, A. 2021. Analysis of multi-spectral images acquired by UAVs to monitor water stress of citrus orchards in Sicily, Italy. In World Environmental and Water Resources Congress 2021, pp 270–278. doi:10.1061/9780784483466.025
  • Pinheiro, C., and Chaves, M. M. 2011. Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot. 62:869–882. doi:10.1093/jxb/erq340
  • Rao, M. J., Hussain, S., Anjum, M. A., Saqib, M., Ahmad, R., Khalid, M. F., Sohail, M., Nafees, M., Ali, M. A., Ahmad, N., Zakir, I., and Ahmad, S. 2019. Effect of seed priming on seed dormancy and vigor. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M. and Fotopoulos, V., Eds., Springer: Singapore, pp 135–145.
  • Ribeiro, R. V., and Machado, E. C. 2007. Some aspects of citrus ecophysiology in subtropical climates: re-visiting photosynthesis under natural conditions. Braz. J. Plant Physiol. 19:393–411. doi:10.1590/S1677-04202007000400009
  • Ribeiro, R. V., Machado, E. C., Santos, M. G., and Oliveira, R. F. 2009. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66:203–211. doi:10.1016/j.envexpbot.2009.03.011
  • Rodrigo, M. J., Alquézar, B., Alós, E., Lado, J., and Zacarías, L. 2013. Biochemical bases and molecular regulation of pigmentation in the peel of Citrus fruit. Sci. Hortic. 163:46–62. doi:10.1016/j.scienta.2013.08.014
  • Rodríguez-Gamir, J., Ancillo, G., González-Mas, M. C., Primo-Millo, E., Iglesias, D. J., and Forner-Giner, M. A. 2011. Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol. Biochem. 49:636–645. doi:10.1016/j.plaphy.2011.03.003
  • Rogers, J. C., and Rohli, R. V. 1991. Florida citrus freezes and polar anticyclones in the Great Plains. J. Clim. 4:1103–1113. doi:10.1175/1520-0442(1991)004<1103:FCFAPA>2.0.CO;2
  • Romero-Trigueros, C., Bayona Gambín, J. M., Nortes Tortosa, P. A., Alarcón Cabañero, J. J., and Nicolás, E. N. 2019. Determination of crop water stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation. Remote Sens 11:757–757. doi:10.3390/rs11070757
  • Romero, P., Navarro, J. M., Pérez-Pérez, J., García-Sánchez, F., Gómez-Gómez, A., Porras, I., Martinez, V., and Botía, P. 2006. Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol. 26:1537–1548. doi:10.1093/treephys/26.12.1537
  • Rosati, A., Metcalf, S. G., Buchner, R. P., Fulton, A. E., and Lampinen, B. D. 2007. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies. Ann. Bot. 99:255–263. doi:10.1093/aob/mcl252
  • Roy, B., and Basu, A. K. 2009. Abiotic Stress Tolerance in Crop Plants: Breeding and Biotechnology. New India Publishing: New-Delhi, India.
  • Salvatierra-Miranda, J., Toussaint, S. B., Pierre, M. O., and Vincent, C. I. 2023. Photoselective particle films influence physiology and growth of citrus. Sci. Hortic. 315:111973. doi:10.1016/j.scienta.2023.111973
  • Santana-Vieira, D. D. S., Freschi, L., Almeida, L. A. D. H., Moraes, D. H. S. D., Neves, D. M., Santos, L. M. D., Bertolde, F. Z., Soares Filho, W. D. S., Coelho Filho, M. A., and Gesteira, A. D. S. 2016. Survival strategies of citrus rootstocks subjected to drought. Sci. Rep. 6:38775–38775. doi:10.1038/srep38775
  • Santos, A. S., Neves, D. M., Santana-Vieira, D. D. S., Almeida, L. A.H., Costa, M. G. C., Soares Filho, W. S., Pirovani, C. P., Coelho Filho, M. A., Ferreira, C. F., and Gesteira, A. S. 2020. Citrus scion and rootstock combinations show changes in DNA methylation profiles and ABA insensitivity under recurrent drought conditions. Sci. Hortic. 267:109313–109313. doi:10.1016/j.scienta.2020.109313
  • Santos, I. C. D., Almeida, A.-A. F. D., Pirovani, C. P., Costa, M. G. C., da Conceição, A. S., Soares Filho, W. D. S., Coelho Filho, M. A., and Gesteira, A. S. 2019. Physiological, biochemical and molecular responses to drought conditions in field-grown grafted and ungrafted citrus plants. Environ. Exp. Bot. 162:406–420. doi:10.1016/j.envexpbot.2019.03.018
  • Sawant, S., Durbha, S. S., and Jagarlapudi, A. 2017. Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Comput. Electron. Agric. 138:175–187. doi:10.1016/j.compag.2017.04.019
  • Schumann, A., Miller, W., Zaman, Q., Hostler, K., Buchanon, S., and Cugati, S. 2006. Variable rate granular fertilization of citrus groves: Spreader performance with single-tree prescription zones. Appl. Eng. Agric. 22:19–24.
  • Shafqat, W., Jaskani, M. J., Maqbool, R., Chattha, W. S., Ali, Z., Naqvi, S. A., Haider, M. S., Khan, I. A., and Vincent, C. I. 2021. Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environ. Exp. Bot. 181:104270. doi:10.1016/j.envexpbot.2020.104270
  • Shafqat, W., Jaskani, M. J., Maqbool, R., Khan, A. S., and Ali, Z. 2019. Evaluation of Citrus Rootstocks against Drought, Heat and their Combined Stress Based on Growth and Photosynthetic Pigments. Int. J. Agric. Biol. 22:1001–1009.
  • Shahid, S. A., Zaman, M., and Heng, L. 2018. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Heng, L., Eds., Springer International Publishing: Cham, pp 43–53.
  • Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., and Trivedi, P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 1–17. doi:10.1038/s41579-023-00900-7
  • Spann, T. M., and Little, H. A. 2011. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown 'hamlin’ sweet orange nursery trees. HortScience 46:577–582. doi:10.21273/HORTSCI.46.4.577
  • Srivastava, A., Wu, Q.-S., Mousavi, S. M., and Hota, D. 2021. Integrated soil fertility management in fruit crops: An overview. Int. J. Fruit Sci. 21:413–439. doi:10.1080/15538362.2021.1895034
  • Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M. L., and Zarco-Tejada, P. J. 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 71:47–61. doi:10.1016/j.isprsjprs.2012.05.003
  • Stanhill, G., Moreshet, S., and Fuchs, M. 1976. Effect of increasing foliage and soil reflectivity on the yield and water use efficiency of grain sorghum1. Agron. J. 68:329–332. doi:10.2134/agronj1976.00021962006800020031x
  • Storey, R., and Walker, R. R. 1998. Citrus and salinity. Sci. Hortic. 78:39–81. doi:10.1016/S0304-4238(98)00190-3
  • Suh, J. H., Guha, A., Wang, Z., Li, S. Y., Killiny, N., Vincent, C., and Wang, Y. 2021. Metabolomic analysis elucidates how shade conditions ameliorate the deleterious effects of greening (Huanglongbing) disease in citrus. Plant J. 108:1798–1814. doi:10.1111/tpj.15546
  • Syvertsen, J. P. 2017. Aspects of stress physiology of citrus. Acta Hortic. 51–58. doi:10.17660/ActaHortic.2017.1177.5
  • Syvertsen, J. P., and Garcia-Sanchez, F. 2014. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot 103:128–137. doi:10.1016/j.envexpbot.2013.09.015
  • Szymańska, R., Ślesak, I., Orzechowska, A., and Kruk, J. 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139:165–177. doi:10.1016/j.envexpbot.2017.05.002
  • Takahashi, S., and Badger, M. R. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 16:53–60. doi:10.1016/j.tplants.2010.10.001
  • Tinyane, P. P., Soundy, P., and Sivakumar, D. 2018. Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Sci. Hortic. 230:43–49. doi:10.1016/j.scienta.2017.11.020
  • Trojak, M., and Skowron, E. 2017. Role of anthocyanins in highlight stress response. World Sci. News 81:150–168.
  • Tumbo, S., Whitney, J., Miller, W., and Wheaton, T. 2002. Development and testing of a citrus yield monitor. Appl. Eng. Agric. 18:399.
  • Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.-K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45:523–539. doi:10.1111/j.1365-313X.2005.02593.x
  • Vicent, A., Botella-Rocamora, P., López-Quílez, A., de la Roca, E., Bascón, J., and García-Jiménez, J. 2012. Relationships between agronomic factors and epidemics of Phytophthora branch canker of citrus in southwestern Spain. Eur. J. Plant Pathol. 133:577–584. doi:10.1007/s10658-011-9930-z
  • Vincent, C., Morillon, R., Arbona, V., and Gómez-Cadenas, A. 2020. Citrus in changing environments. In The Genus Citrus; Talon, M., Caruso, M., and Gmitter, F.G., Eds. Woodhead Publishing: Sawston, Cambridge, UK, pp 271–289.
  • Vu, J. C. V. 2005. Photosynthesis, growth, and yield of citrus at elevated atmospheric CO2. J. Crop Improv. 13:361–376. doi:10.1300/J411v13n01_17
  • Vu, J. C. V., and Yelenosky, G. 1991. Photosynthetic responses of citrus trees to soil flooding. Physiol. Plant. 81:7–14. doi:10.1034/j.1399-3054.1991.810102.x
  • Wang, M., Zhang, X., and Liu, J.-H. 2015. Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. BMC Genomics 16:555–555.
  • Waqar, S., Summar, A. N., Rizwana, M., Muhammad Salman, H., Muhammad Jafar, J., and Iqrar, A. K. 2021. Climate change and citrus. In Muhammad Sarwar, K., Iqrar Ahmad, K., Eds., Citrus. IntechOpen, Rijeka, p 8.
  • Wei, Q., Ma, Q., Ma, Z., Zhou, G., Feng, F., Le, S., Lei, C., and Gu, Q. 2019. Genome-wide identification and characterization of sweet orange (Citrus sinensis) aquaporin genes and their expression in two citrus cultivars differing in drought tolerance. Tree Genet. Genomes 15:17. doi:10.1007/s11295-019-1321-1
  • Whitney, J. D., Miller, W. M., Wheaton, T., Salyani, M., and Schueller, J. K. 1999. Precision farming applications in Florida citrus. Appl. Eng. Agric. 15:399–403.
  • Wicke, B., Smeets, E. M. W., Akanda, R., Stille, L., Singh, R. K., Awan, A. R., Mahmood, K., and Faaij, A. P. C. 2013. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: Exploration of the GHG balance and economic performance of three case studies. J. Environ. Manage. 127:324–334. doi:10.1016/j.jenvman.2013.05.060
  • Wu, H. H., Zou, Y. N., Rahman, M. M., Ni, Q. D., and Wu, Q. S. 2017. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 7:42389. doi:10.1038/srep42389
  • Wu, Q.-S., Srivastava, A., and Li, Y. 2015. Effects of mycorrhizal symbiosis on growth behavior and carbohydrate metabolism of trifoliate orange under different substrate P levels. J. Plant Growth Regul. 34:499–508. doi:10.1007/s00344-015-9485-x
  • Wu, Q. S., He, X. H., Zou, Y. N., Liu, C. Y., Xiao, J., and Li, Y. 2012. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 68:27–35. doi:10.1007/s10725-012-9690-6
  • Wu, Q. S., Zou, Y. N., and He, X. H. 2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant. 32:297–304. doi:10.1007/s11738-009-0407-z
  • Xiao, J.-P., Zhang, L.-L., Zhang, H.-Q., and Miao, L.-X. 2017. Identification of genes involved in the responses of tangor (C. reticulata × C. sinensis) to drought stress. Biomed Res. Int. 2017:8068725–8068725. doi:10.1155/2017/8068725
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., and Brown, P. H. 2016. Biostimulants in plant science: A global perspective. Front. Plant Sci. 7:2049. doi:10.3389/fpls.2016.02049
  • Yang, L., Ye, J., Guo, W.-D., Wang, C.-C., and Hu, H.-T. 2012. Differences in cold tolerance and expression of two fatty acid desaturase genes in the leaves between fingered citron and its dwarf mutant. Trees 26:1193–1201. doi:10.1007/s00468-012-0695-6
  • Zandalinas, S. I., Sales, C., Beltrán, J., Gómez-Cadenas, A., and Arbona, V. 2016. Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front. Plant Sci. 7:1954. doi:10.3389/fpls.2016.01954
  • Zegeye, H. 2018. Climate change in Ethiopia: impacts, mitigation and adaptation. Int. J. Res. Environ. Stud. 5:18–35.
  • Zhang, L., Ma, G., Kato, M., Yamawaki, K., Takagi, T., Kiriiwa, Y., Ikoma, Y., Matsumoto, H., Yoshioka, T., and Nesumi, H. 2012. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. J. Exp. Bot. 63:871–886. doi:10.1093/jxb/err318
  • Zhang, L., Ma, G., Yamawaki, K., Ikoma, Y., Matsumoto, H., Yoshioka, T., Ohta, S., and Kato, M. 2015. Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs. J. Plant Physiol. 188:58–63. doi:10.1016/j.jplph.2015.09.006
  • Zhang, X., Wang, W., Wang, M., Zhang, H.-Y., and Liu, J.-H. 2016. The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol. 57:1865–1878. doi:10.1093/pcp/pcw108
  • Zhu, J.-K. 2016. Abiotic stress signaling and responses in plants. Cell 167:313–324. doi:10.1016/j.cell.2016.08.029
  • Ziogas, V., Bravos, N., and Hussain, S. B. 2022. Preharvest foliar application of Si–Ca-based biostimulant affects postharvest quality and shelf-life of clementine mandarin (Citrus clementina Hort. Ex Tan). Horticulturae 8:996. doi:10.3390/horticulturae8110996
  • Ziogas, V., Tanou, G., Belghazi, M., Diamantidis, G., and Molassiotis, A. 2017. Characterization of β-amino- and γ-amino butyric acid-induced citrus seeds germination under salinity using nanoLC–MS/MS analysis. Plant Cell Rep. 36:787–789. doi:10.1007/s00299-016-2063-2
  • Ziogas, V., Tanou, G., Belghazi, M., Filippou, P., Fotopoulos, V., Grigorios, D., and Molassiotis, A. 2015. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Mol. Biol. 89:433–450. doi:10.1007/s11103-015-0379-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.