181
Views
0
CrossRef citations to date
0
Altmetric
Research Article

From Salinity to Nutrient-Rich Vegetables: Strategies for Quality Enhancement in Protected Cultivation

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdelkefi, N., Louati, I., Mechichi, H.-Z., Sayahi, N., Sayed, W. E., Nayal, A. E., Ismail, W., Hanin, M., and Mechichi, T. 2024. Enhanced salt stress tolerance in tomato plants following inoculation with newly isolated plant growth-promoting rhizobacteria. Sci. Horticult. 328: 112921. doi:10.1016/j.scienta.2024.112921
  • Abiala, M. A., Abdelrahman, M., Burritt, D. J., and Tran, L. S. P. 2018. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad. Dev. 29: 3812–3822. doi:10.1002/ldr.3095
  • Agius, C., von Tucher, S., and Rozhon, W. 2022. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae 8: 59. doi:10.3390/horticulturae8010059
  • Ahmadi, F., Mohammadkhani, N., and Servati, M. 2022. Halophytes play important role in phytoremediation of salt-affected soils in the bed of Urmia Lake, Iran. Sci. Rep. 12: 12223. doi:10.1038/s41598-022-16266-4
  • Akrami, M. and Arzani, A. 2019. Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress. Sci. Rep. 9: 7249. doi:10.1038/s41598-019-43616-6
  • Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., and Al-Saif, A. M. 2021. Biochar and its broad impacts in soil quality and fertility, nutrient leaching, and crop productivity: a review. Agronomy 1: 993.
  • Aroca, A., García-Díaz, I., García-Calderón, M., Gotor, C., Márquez, A. J., and Betti, M. 2023. Photorespiration: regulation and new insights on the potential role of persulfidation. J. Exp. Bot. 74: 6023–6039. doi:10.1093/jxb/erad291
  • Balliu, A., Zheng, Y., Sallaku, G., Fernández, J. A., Gruda, N. S., and Tuzel, Y. 2021. Environmental and cultivation factors affect the morphology, architecture, and performance of root systems in soilless grown plants. Horticulturae 7: 243. doi:10.3390/horticulturae7080243
  • Bamji, M. S., Murty, P. V. V. S., and Sudhir, P. D. 2021. Nutritionally sensitive agriculture—an approach to reducing hidden hunger. Eur. J. Clin. Nutr. 75: 1001–1009. doi:10.1038/s41430-020-00760-x
  • Barkla, B. J., Farzana, T., and Rose, T. J. 2024. Commercial cultivation of edible halophytes: the issue of oxalates and potential mitigation options. Agronomy 14: 242. doi:10.3390/agronomy14020242
  • Bartels, D. and Sunkar, R. 2005. Drought and salt tolerance in plants. CRC Crit. Rev. Plant Sci. 24: 23–58. doi:10.1080/07352680590910410
  • Baum, C., El-Tohamy, W., and Gruda, N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci. Horticult. 187: 131–141. doi:10.1016/j.scienta.2015.03.002
  • Behera, T. K., Krishna, R., Ansari, W. A., Aamir, M., Kumar, P., Kashyap, S. P., Pandey, S., and Kole, C. 2021. Approaches involved in the vegetable crops salt stress tolerance improvement: present status and way ahead. Front. Plant Sci. 12: 787292. doi:10.3389/fpls.2021.787292
  • Bonasia, A., Lazzizera, C., Elia, A., and Conversa, G. 2017. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 8: 300. doi:10.3389/fpls.2017.00300
  • Carillo, P., Soteriou, G. A., Kyriacou, M. C., Giordano, M., Raimondi, G., Napolitano, F., Di Stasio, E., Mola, I. D., Mori, M., and Rouphael, Y. 2021. Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality. Agronomy 11: 1040. doi:10.3390/agronomy11061040
  • Chatzigianni, M., Ntatsi, G., Theodorou, M., Stamatakis, A., Livieratos, I., Rouphael, Y., and Savvas, D. 2019. Functional Quality, Mineral Composition, and Biomass Production in Hydroponic Spiny Chicory (Cichorium spinosum L.) Are Modulated Interactively by Ecotype, Salinity and Nitrogen Supply. Front. Plant Sci. 10: doi:10.3389/fpls.2019.01040
  • Chourasia, K. N., More, S. J., Kumar, A., Kumar, D., Singh, B., Bhardwaj, V., Kumar, A., Das, S. K., Singh, R. K., Zinta, G., Tiwari, R. K., and Lal, M. K. 2022. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta 255: 68. doi:10.1007/s00425-022-03845-y
  • Chrétien, S., Gosselin, A., and Dorais, M. 2000. High electrical conductivity and radiation-based water management improve fruit quality of greenhouse tomatoes grown in rockwool. HortSci 25: 627–631.
  • Corrado, G., Vitaglione, P., Soteriou, G. A., Kyriacou, M. C., and Rouphael, Y. 2021. Configuration by Osmotic Eustress Agents of the Morphometric Characteristics and the Polyphenolic Content of Differently Pigmented Baby Lettuce Varieties in Two Successive Harvests. Horticulturae 7: 264. doi:10.3390/horticulturae7090264
  • Dar, M. H., Razvi, S. M., Singh, N., Mushtaq, A., Dar, S., and Hussain, S. 2023. Arbuscular mycorrhizal fungi for salinity stress: anti-stress role and mechanisms. Pedosphere 33: 212–224. doi:10.1016/j.pedsph.2022.06.027
  • Dasgan, H. Y., Aldiyab, A., Elgudayem, F., Ikiz, B., and Gruda, N. S. 2022. Effect of biofertilizers on leaf yield, nitrate amount, mineral content, and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Sci. Rep. 12: 20917. doi:10.1038/s41598-022-24799-x
  • Dasgan, H. Y., Kacmaz, S., Arpaci, B. B., İkiz, B., and Gruda, N. S. 2023. Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.). Agronomy 13: 575. doi:10.3390/agronomy13020575
  • Davis, K. F., Downs, S., and Gephart, J. A. 2021. Towards food supply chain resilience to environmental shocks. Nat. Food. 2: 54–65. doi:10.1038/s43016-020-00196-3
  • Di Gioia, F., Rosskopf, E. N., Leonardi, C., and Giuffrida, F. 2018. Effects of application timing of saline irrigation water on broccoli production and quality. Agric. Water Manag. 203: 97–104. doi:10.1016/j.agwat.2018.01.004
  • Dong, S., Wan, S., Kang, Y., Miao, J., and Li, X. 2021. Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China. Agric. Water Manag. 247: 106730. doi:10.1016/j.agwat.2020.106730
  • Dumas, Y., Dadomo, M., Di Lucca, G., and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83: 369–382. doi:10.1002/jsfa.1370
  • Ehret, D. L., Usher, K., Helmer, T., Block, G., Steinke, D., Frey, B., Kuang, T., and Diarra, M. 2013. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J. Agric. Food Chem. 61: 1138–1145. doi:10.1021/jf304660d
  • Eigenbrod, C. and Gruda, N. 2015. Urban vegetables for food security in cities. A review. Agron. Sustain. Dev. 35: 483–498. doi:10.1007/s13593-014-0273-y
  • El-Mogy, M. M., Garchery, C., and Stevens, R. 2018. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agric. Scand. Sect. B Soil Plant Sci 68: 727–737.
  • El-Tohamy, W. A., El-Abagy, H. M., El-Greadly, N. H. M., and Gruda, N. 2009. Hormonal changes, growth and yield of tomato plants in response to chemical and bio-fertilization application in sandy soils. J. Appl. Bot. Food Qual. 82: 179–182.
  • Elwan, M. W. M. 2010. Ameliorative effects of di-potassium hydrogen orthophosphate on salt-stressed eggplant. J. Plant Nutr. 33: 1593–1604. doi:10.1080/01904167.2010.496884
  • Fallovo, C., Rouphael, Y., Rea, E., Battistelli, A., and Colla, G. 2009. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 89: 1682–1689. doi:10.1002/jsfa.3641
  • Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., and Saccardo, F. 2006a. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54: 4319–4325. doi:10.1021/jf0602572
  • Fanasca, S., Colla, G., Rouphael, Y., Saccardo, F., Maiani, G., Venneria, E., and Azzini, E. 2006b. Evolution of nutritional value of two tomato genotypes grown in soilless culture as affected by macrocation proportions. HortScience. 41: 1584–1588. doi:10.21273/HORTSCI.41.7.1584
  • FAO 2022. https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/. Accessed on 6 December 2023.
  • Forni, C., Duca, D., and Glick, B. R. 2017. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410: 335–356. doi:10.1007/s11104-016-3007-x
  • Fricke, A., Harbart, V., Schreiner, M., and Baldermann S. 2023. A proof of concept for inland production of the “sea-vegetable” Ulva compressa in Brandenburg (Central Europe) using regional saline groundwater. Algal Research 74: 103226. doi:10.1016/j.algal.2023.103226
  • Fu, Q., Liu, C., Ding, N., Lin, Y., and Guo, B. 2010. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric. Water Manag. 97: 1994–2000. doi:10.1016/j.agwat.2010.02.003
  • Gallegos-Cedillo, V. M., Nájera, C., Signore, A., Ochoa, J., Gallegos, J., Egea-Gilabert, C., Gruda, N. S., and Fernández, J. A. 2024. Analysis of global research on vegetable seedlings and transplants and their impacts on product quality. J. Sci. Food Agric. doi:10.1002/jsfa.13309
  • Galli, V., da Silva Messias, R., Perin, E. C., Borowski, J. M., Bamberg, A. L., and Rombaldi, C. V. 2016. Mild salt stress improves strawberry fruit quality. LWT - Food Sci. Technol. 73: 693–699. doi:10.1016/j.lwt.2016.07.001
  • Giménez, A., Martínez-Ballesta, M. D. C., Egea-Gilabert, C., Gómez, P. A., Artés-Hernández, F., Pennisi, G., Orsini, F., Crepaldi, A., and Fernández, J. A. 2021. Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. Horticulturae 7: 180. doi:10.3390/horticulturae7070180
  • Giordano, M., Petropoulos, S. A., and Rouphael, Y. 2021. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 11: 463. doi:10.3390/agriculture11050463
  • Giuffrida, F., Cassaniti, C., Malvuccio, A., and Leonardi, C. 2017. Effects of salt stress imposed during two growth phases on cauliflower production and quality. J. Sci. Food Agric 97: 1552–1560. doi:10.1002/jsfa.7900
  • Giuffrida, F., Graziani, G., Fogliano, V., Scuderi, D., Romano, D., and Leonardi, C. 2014. Effects of nutrient and NaCl Salinity on growth, yield, quality and composition of pepper grown in soilless closed system. J. Plant Nutr. 37: 1455–1474. doi:10.1080/01904167.2014.881874
  • Grieve, C. M. 2010. Salinity-induced enhancement of horticultural crop quality. In: M. Pessarakli (Ed.) Handbook of Plant and Crop Stress, 3rd Edition. CRC Press, Florida. Chapter 47, p. 1173–1194.
  • Groppa, M. D., Benavides, M., and Zawoznik, S. 2012. Root hydraulic conductance, aquaporins and plant growth promoting microorganisms: A revision. Appl. Soil Ecol. 61: 247–254. doi:10.1016/j.apsoil.2011.11.013
  • Gruda, N. 2005. Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. Crit. Rev. Plant Sci. 24: 227–247. doi:10.1080/07352680591008628
  • Gruda, N. 2009. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 82: 141–147. doi:10.17660/ActaHortic.2015.1107.37
  • Gruda, N. 2019a. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 9: 298. doi:10.3390/agronomy9060298
  • Gruda, N. 2019b. Assessing the impact of environmental factors on the quality of greenhouse produce. In: Achieving Sustainable Greenhouse Cultivation (eds. Marcelis, L. and E. Heuvelink). Burleigh Dodds Science Publishing Limited. Chapter 16. doi:10.19103/AS.2019.0052.16
  • Gruda, N., Bisbis, M. B., and Tanny, J. 2019a. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – a review. J. Clean. Prod. 225: 324–339. doi:10.1016/j.jclepro.2019.03.295
  • Gruda, N., Bisbis, M. B., and Tanny, J. 2019b. Influence of climate change on protected cultivation: impacts and sustainable adaptation strategies - a review. J. Clean. Prod. 225: 481–495. doi:10.1016/j.jclepro.2019.03.210
  • Gruda, N., Savvas, D., Colla, G., and Rouphael, Y. 2018. Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables–A review. Eur. J. Horticul. Sci. 83: 319–328. doi:10.17660/eJHS.2018/83.5.5
  • Gruda, N. and Tanny, J. 2014. Protected Crops, 327-405: Chapter 10, In: Horticulture – Plants for People and Places, Volume 1: Production Horticulture. G.R. Dixon, and D.E. Aldous, Eds. Springer Science + Business Media Dordrecht, Netherlands, p. 1043. ISBN 978-94-017-8577-8. doi:10.1007/978-94-017-8578-5_10
  • Gruda, N. and Tanny, J. 2015. Protected crops – Recent advances, innovative technologies and future challenges. Presented at the 29th International Horticultural Congress in Brisbane, Australia, 17–22 August 2014. Acta Hort. 1107: 271–277. doi:10.17660/ActaHortic.2015.1107.37
  • Gulser, F., Sonmez, F., and Boysan, S. 2010. Effects of calcium nitrate and humic acid on pepper seedling growth under saline conditions. J. Environ. Biol 31: 873–876.
  • Gupta, S., Kaur, N., Kant, K., Jindal, P., Ali, A., and Naeem, M. 2023. Calcium: a master regulator of stress tolerance in plants. South Afr. J. Bot. 163: 580–594. doi:10.1016/j.sajb.2023.10.047
  • Haghighi, M., Afifipour, Z., and Mozafarian, M. 2012. The effect of N–Si on tomato seed germination under salinity levels.
  • Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F., and Poschenrieder, C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331: 313–327. doi:10.1007/s11104-009-0255-z
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Prasad, M. N. V., Ozturk, M., and Fujita, M. 2014. Potential use of halophytes to remediate saline soils. Biomed Res. Int. 2014: 1–12. doi:10.1155/2014/589341
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., and Bohnert, J.J. 2000. Plant cellular and molecular response to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499. doi:10.1146/annurev.arplant.51.1.463
  • Hassani, A., Azapagic, A., and Shokri, N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 12: 6663. doi:10.1038/s41467-021-26907-3
  • Hegazi, A.M., El-Shraiy, A.M., and Ghoname, A.A. 2017. Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF). Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen 69: 91–102. doi:10.1007/s10343-017-0393-9
  • Ho, L.C. and White, P.J. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95: 571–581. doi:10.1093/aob/mci065
  • Hu, S., Liu, L., Zuo, S., Ali, M., and Wang, Z. 2020. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species. J Clean. Prod. 266: 121991. doi:10.1016/j.jclepro.2020.121991
  • Ikiz, B., Dasgan, H.Y., and Gruda, N.S. 2024. Utilizing the power of plant growth promoting rhizobacteria on reducing mineral fertilizer, improved yield, and nutritional quality of Batavia lettuce in a floating culture. Sci. Rep. 14: 1616. doi:10.1038/s41598-024-51818-w
  • Incrocci, L., Malorgio, F., Bartola, A. D., and Pardossi, A. 2006. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Sci. Horticult. 107: 365–372. doi:10.1016/j.scienta.2005.12.001
  • Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Kempen, B., and Sousa, L. D. 2019. Global mapping of soil salinity change. Remote Sens. Environ. 231: 111260. doi:10.1016/j.rse.2019.111260
  • Jesus, J. M., Danko, A. S., Fiúza, A., and Borges, M.-T. 2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. Int. 22: 6511–6525. doi:10.1007/s11356-015-4205-4
  • Jia, J., Zhang, J., Li, Y., Koziol, L., Podzikowski, L., Delgado-Baquerizo, M., Wang, G., and Zhang, J. 2023. Relationships between soil biodiversity and multifunctionality in croplands depend on salinity and organic matter. Geoderma 429: 116273. doi:10.1016/j.geoderma.2022.116273
  • Kalhor, S. M., Aliniaeifard, S., Seif, M., Javadi, E., Bernard, F., and Li, T. 2018. Rhizobacterium Bacillus subtilis reduces toxic effects of high electrical conductivity in soilless culture of lettuce. Acta Hortic 1227: 471–478.
  • Krauss, S., Schnitzler, W.H., Grassmann, J., and Woitke, M. 2006. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 54: 441–448. doi:10.1021/jf051930a
  • Krumbein, A., Schwarz, D., and Kläring, H. P. 2006. Effects of environmental factors on carotenoid content in tomato (Lycopersicon esculentum (L.) Mill.) grown in a greenhouse. J. Appl. Bot. Food Qual. 80: 160–164.
  • Lara-Izaguirre, A.Y., Rojas-Velázquez, Á.N., Alia-Tejacal, I., and Alcalá-Jáuregui, J.A. 2022. Sodium chloride on bioactive compounds of eggplant (Solanum melongena L.) grown in hydroponics under two protected structures. Agrociencia 56: 207– 219. doi:10.47163/agrociencia.v56i2.2732
  • Latef, A.A.H.A. and He, C. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidiant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 127: 228–233.
  • Laudicina, V., Hurtado, M., Badalucco, L., Delgado, A., Palazzolo, E., and Panno, M. 2009. Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biol. Fertil. Soils 45: 691–700. doi:10.1007/s00374-009-0380-0
  • Li, Y. 2009. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Mod. Appl. Sci. 3: 171–176.
  • Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., and Xu, C. 2018. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36: 1160–1163. doi:10.1038/nbt.4273
  • López-Berenguer, C., Martínez-Ballesta, M. d C., Moreno, D. A., Carvajal, M., and García-Viguera, C. 2009. Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem. 57: 572–578. doi:10.1021/jf802994p
  • López-Serrano, L., Calatayud, Á., López-Galarza, S., Serrano, R., and Bueso, E. 2021. Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biol. 21: 169. doi:10.1186/s12870-021-02938-2
  • Lu, Q., Ge, G., Sa, D., Wang, Z., Hou, M., and Jia, Y.S. 2021. Effects of salt stress levels on nutritional quality and microorganisms of alfalfa-influenced soil. Peer J. 9: e11729. doi:10.7717/peerj.11729
  • Malhi, G.S., Kaur, M., Kaushik, P., Alyemeni, M.N., Alsahli, A.A., and Ahmad, P. 2021. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: an eco-friendly approach. Saudi J. Biol. Sci. 28: 1465–1476. doi:10.1016/j.sjbs.2020.12.001
  • Mansour, M.M.F. 2023. Anthocyanins: biotechnological targets for enhancing crop tolerance to salinity stress. Sci. Horticulult. 319: 112182. doi:10.1016/j.scienta.2023.112182
  • Marra, F., Maffia, A., Canino, F., Petrovicova, B., Mallamaci, C., Russo, Mt., Iftikhar Hussain, M., and Muscolo, A. 2023. Enhancing the nutritional value of sweet bell pepper through moderate NaCl salinity. Heliyon. 9(12): e22439. doi:10.1016/j.heliyon.2023.e22439
  • Martínez-Ballesta, M.C., Dominguez-Perles, R., Moreno, D.A., Muries, B., Alcaraz-López, C., Bastías, E., García-Viguera, C., and Carvajal, M. 2010. Minerals in plant food: effect of agricultural practices and role in human health: a review. Agron. Sustain. Dev. 30: 295–309. doi:10.1051/agro/2009022
  • Mishra, P., Mishra, J., and Arora, N. K. 2021. Plant growth promoting bacteria for combating salinity stress in plants – recent developments and prospects: a review. Microbiol. Res. 252: 126861. doi:10.1016/j.micres.2021.126861
  • Mizrahi, Y. 1982. Effect of salinity on tomato fruit ripening. Plant Physiol. 69: 966–970. doi:10.1104/pp.69.4.966
  • Moncada, A., Vetrano, F., and Miceli, A. 2020. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 10: 1523. doi:10.3390/agronomy10101523
  • Mourouzidou, S., Ntinas, G.K., Tsaballa, A., and Monokrousos, N. 2023. Introducing the power of plant growth promoting microorganisms in soilless systems: a promising alternative for sustainable agriculture. Sustainability 15: 5959. doi:10.3390/su15075959
  • Moya, C., Oyanedel, E., Verdugo, G., Flores, M.F., Urrestarazu, M., and Álvaro, J.E. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. Horts. 52: 868–872. doi:10.21273/HORTSCI12026-1
  • Msimbira, L. and Smith, D.L. 2023. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustainable Food Syst. 4. doi:10.3389/fsufs.2020.00106
  • Murtaza, G., Usman, M., Jatoi, G. H., Tahir, M. N., Elshikh, M. S., Alkahtani, J., Iqbal, R., and Gruda, N. S. 2024. The impact of biochar addition on morpho-physiological characteristics, yield, and water use efficiency of tomato plants under drought and salinity stress. BMC Plant Biol. 24: 356. doi:10.1186/s12870-024-05058-9
  • Muscolo, A., Calderaro, A., Papalia, T., Settineri, G., Mallamaci, C., and Panuccio, M.R. 2020. Soil salinity improves nutritional and health promoting compounds in three varieties of lentil (Lens culinaris Med.). Food Biosci. 35: 100571. doi:10.1016/j.fbio.2020.100571
  • Neocleous, D., Koukounaras, A., Siomos, A.S., and Vasilakakis, M. 2014. Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce. J. Food Qual 37: 1–8. doi:10.1111/jfq.12066
  • Orsini, F., Cascone, P., De Pascale, S., Barbieri, G., Corrado, G., Rao, R., and Maggio, A. 2010. Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol. Plant 138: 10–21. doi:10.1111/j.1399-3054.2009.01292.x
  • Østerberg, J. T., Xiang, W., Olsen, L. I., Edenbrandt, A. K., Vedel, S. E., Christiansen, A., Landes, X., Andersen, M. M., Pagh, P., Sandøe, P., Nielsen, J., Christensen, S. B., Thorsen, B. J., Kappel, K., Gamborg, C., and Palmgren, M. 2017. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci 22: 373–384.
  • Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., López-Galarza, S., and Calatayud, A. 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J. Plant Physiol. 193: 1–11. doi:10.1016/j.jplph.2016.02.007
  • Pérez-Alfocea, F., Albacete, A., Ghanem, M.E., and Dodd, I.C. 2010. Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Functional Plant Biol. 37: 592–603. doi:10.1071/FP10012
  • Pérez-López, U., Miranda-Apodaca, J., Lacuesta, M., Mena-Petite, A., and Muñoz-Rueda, A. 2015. Growth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinity. Sci. Hortic 195: 56–66. doi:10.1016/j.scienta.2015.08.034
  • Petropoulos, S. A., Levizou, E., Ntatsi, G., Fernandes, Â., Petrotos, K., Akoumianakis, K., Barros, L., and Ferreira, I. C. F. R. 2017. Salinity effect on nutritional value, chemical composition and bioactive compounds content in Cichorium spinosum L. Food Chem. 214: 129–136. doi:10.1016/j.foodchem.2016.07.080
  • Plaut, Z., Grava, A., Yehezkel, C., and Matan, E. 2004. How do salinity and water stress affect water transport, assimilates and ions to tomato fruits? Physiol. Plantar. 122: 429–442. doi:10.1111/j.1399-3054.2004.00416.x
  • Porcel, R., Aroca, R., and Ruiz-Lozano, J.M. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. Agron. Sustain. Dev. 32: 181–200. doi:10.1007/s13593-011-0029-x
  • Puccinelli, M., Marchioni, I., Botrini, L., Carmassi, G., Pardossi, A., and Pistelli, L. 2024. Growing Salicornia europaea L. with saline hydroponic or aquaculture wastewater. Horticulturae 10: 196. doi:10.3390/horticulturae10020196
  • Redondo-Gómez, S., Mesa-Marín, J., Pérez-Romero, J. A., López-Jurado, J., García-López, J. V., Mariscal, V., Molina-Heredia, F. P., Pajuelo, E., Rodríguez-Llorente, I. D., Flowers, T. J., and Mateos-Naranjo, E. 2021. Consortia of plant-growth-promoting rhizobacteria isolated from halophytes improve response of eight crops to soil salinization and climate change conditions. Agronomy 11: 1609. doi:10.3390/agronomy11081609
  • Rodríguez-Ortega, W. M., Martínez, V., Nieves, M., Simón, I., Lidón, V., Fernandez-Zapata, J. C., Martinez-Nicolas, J. J., Cámara-Zapata, J. M., and García-Sánchez, F. 2019. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep. 9: 6733. doi:10.1038/s41598-019-42805-7
  • Rouphael, Y. and Colla, G. 2005. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci Hortic 105: 177–195. doi:10.1016/j.scienta.2005.01.025
  • Rouphael, Y. and Kyriacou, M.C. 2018. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 9: 1254. doi:10.3389/fpls.2018.01254
  • Rouphael, Y., Petropoulos, S.A., Cardarelli, M., and Colla, G. 2018. Salinity as eustressor for enhancing quality of vegetables. Scientia Horticul 234: 361–369. doi:10.1016/j.scienta.2018.02.048
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., and Yildirim, E. 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hort 240: 196–204. doi:10.1016/j.scienta.2018.06.016
  • Saleh, S., Liu, G., Liu, M., Liu, W., Gruda, N., and He, H. 2019. Reducing the salinity impact on soilless culture of tomatoes using supplemental Ca and foliar micronutrients. Asphc. 18: 187–200. doi:10.24326/asphc.2019.3.18
  • Šamec, D., Linić, I., and Salopek-Sondi, B. 2021. Salinity stress as an elicitor for phytochemicals and minerals accumulation in selected leafy vegetables of brassicaceae. Agronomy 11: 361. doi:10.3390/agronomy11020361
  • Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., and Lorenzo, P. 2016. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high-value tomatoes. Span. J. Agric. Res. 14: e0903. doi:10.5424/sjar/2016142-8392
  • Santander, C., Vidal, G., Ruiz, A., Vidal, C., and Cornejo, P. 2022. Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce. Agronomy 12: 598. doi:10.3390/agronomy12030598
  • Sarker, U., Islam, M.T., and Oba, S. 2018. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS One. 13: e0206388. doi:10.1371/journal.pone.0206388
  • Sarker, U., and Oba, S. 2018. Salinity stress enhances colour parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J. Sci. Food Agric. 99: 2275–2284. doi:10.1002/jsfa.9423
  • Sato, S., Sakaguchi, S., Furukawa, H., and Ikeda, H. 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia Horticul 109: 248–253. doi:10.1016/j.scienta.2006.05.003
  • Savvas, D. and Gruda, N. 2018. Application of soilless culture technologies in the modern greenhouse industry - A review. Eur. J. Hortic. Sci. 83: 280–293. doi:10.17660/eJHS.2018/83.5.2
  • Savvas, D. and Lenz, F. 2000. Effects of NaCl or nutrient-induced salinity on growth, yield, and composition of eggplants grown in rockwool. Sci. Horticul 84: 37–47. doi:10.1016/S0304-4238(99)00117-X
  • Scheelbeek, P. F. D., Bird, F. A., Tuomisto, H. L., Green, R., Harris, F. B., Joy, E. J. M., Chalabi, Z., Allen, E., Haines, A., and Dangour, A. D. 2018. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. U S A. 115: 6804–6809. doi:10.1073/pnas.1800442115
  • Senizza, B., Zhang, L., Miras-Moreno, B., Righetti, L., Zengin, G., Ak, G., Bruni, R., Lucini, L., Sifola, M. I., El-Nakhel, C., Corrado, G., and Rouphael, Y. 2020. The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. Foods 9: 1156. doi:10.3390/foods9091156
  • Seo, M. W., Yang, D. S., Kays, S. J., Kim, J. H., Woo, J. H., and Park, K. W. 2009. Effects of nutrient solution electrical conductivity and sulfur, magnesium, and phosphorus concentration on sesquiterpene lactones in hydroponically grown lettuce (Lactuca sativa L.). Sci Hortic 122: 369–374. doi:10.1016/j.scienta.2009.06.013
  • Serio, F., e Gara, L., Caretto, S., Leo, L., and Santamaria, P. 2004. Influence of an increased NaCl concentration on yield and quality of cherry tomato grown in posidonia (Posidonia oceanica L. Delile). J. Sci. Food Agric. 84: 1885–1890. doi:10.1002/jsfa.1883
  • Setia, R., Gottschalk, P., Smith, P., Marschner, P., Baldock, J., Setia, D., and Smith, J. 2013. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 465: 267–272. doi:10.1016/j.scitotenv.2012.08.028
  • Sgherri, C., Pérez-López, U., Micaelli, F., Miranda-Apodaca, J., Mena-Petite, A., Muñoz-Rueda, A., and Quartacci, M. F. 2017. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiol. Biochem. 115: 269–278. doi:10.1016/j.plaphy.2017.04.006
  • Shahba, Z., Baghizadeh, A., Ali, V., S. M., Ali, Y., and Mehdi, Y. 2010. The salicylic acid effect on the tomato (Lycopersicon esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J. Biophy. Struct. Biol. 2: 35–41.
  • Shahbaz, M., Ashraf, M., Al-Qurainy, F., and Harris, P. J. C. 2014. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31: 303–320. doi:10.1080/07352689.2012.656496
  • Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., and Yildirim, E. 2019. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol. Mol. Biol. Plants. 25: 1149–1161. doi:10.1007/s12298-019-00692-2
  • Shamsabad, M. R. M., Esmaeilizadeh, M., Roosta, H. R., Dehghani, M. R., Dąbrowski, P., and Kalaji, H. M. 2022. The effect of supplementary light on the photosynthetic apparatus of strawberry plants under salinity and alkalinity stress. Sci. Rep. 12: 13257. doi:10.1038/s41598-022-17377-8
  • Shams, M. and Khadivi, A. 2023. Mechanisms of salinity tolerance and their possible application in the breeding of vegetables. BMC Plant Biol. 23: 139. doi:10.1186/s12870-023-04152-8
  • Shin, Y. K., Bhandari, S. R., Jo, J. S., Song, J. W., Cho, M. C., Yang, E. Y., and Lee, J. G. 2020. Response to salt stress in lettuce: changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 10: 1627. doi:10.3390/agronomy10111627
  • Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., and Al Sahli, A. A. 2014. Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem. 33: 2429–2437. doi:10.1002/etc.2697
  • Singh, H., Kumar, P., Kumar, A., Kyriacou, M. C., Colla, G., and Rouphael, Y. 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy 10: 263. doi:10.3390/agronomy10020263
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savouré, A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115: 433–447. doi:10.1093/aob/mcu239
  • Steinwand, M.A., and Ronald, P.C. 2020. Crop biotechnology and the future of food. Nat. Food 1: 273–283. doi:10.1038/s43016-020-0072-3
  • Tantawy, A. S., Abdel-Mawgoud, A. M. R., El-Nemr, M. A., and Chamoun, Y. G. 2009. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur. J. Sci. Res 30: 484–494.
  • Tarroum, M., Romdhane, W. B., Al-Qurainy, F., Ali, A. A. M., Al-Doss, A., Fki, L., and Hassairi, A. 2022. A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Front. Microbiol. 13: 996054. doi:10.3389/fmicb.2022.996054
  • Timm, S., and Hagemann, M. 2020. Photorespiration—how is it regulated, and how does it regulate overall plant metabolism? Enviorn. J. Exp. Bot. 71: 3955–3965. doi:10.1093/jxb/eraa183
  • Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., and Ferrante, A. 2019. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front. Plant Sci. 10. doi:10.3389/fpls.2019.01212
  • Trajkova, F., Papadantonakis, N., and Savvas, D. 2006. Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. Hort. Sci. 41: 437–441.
  • Turkmen, O., Sensoy, S., Demir, S., and Erdinc, C. 2008. Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress. Afr. J. Biotech. 7:392–396.
  • Tzortzakis, N., Pitsikoulaki, G., Stamatakis, A., and Chrysargyris, A. 2022. Ammonium to total nitrogen ratio interactive effects with salinity application on solanum lycopersicum growth, physiology, and fruit storage in a closed hydroponic system. Agronomy 12: 386. doi:10.3390/agronomy12020386
  • Ventura, Y. and Sagi, M. 2013. Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ. Exp. Bot. 92: 144–153. doi:10.1016/j.envexpbot.2012.07.010
  • Vicente-Sánchez, J., Nicolás, E., Pedrero, F., Alarcón, J.J., Maestre-Valero, J.F., and Fernández, F. 2014. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24: 339–348. doi:10.1007/s00572-013-0542-7
  • Voogt, W., Balendonck, J., Berkelmans, R., and Enthoven, N. 2017. Irrigation management in organic greenhouse: how to comply with sustainability goals. Acta Horticult. 1164: 273–288. doi:10.17660/ActaHortic.2017.1164.35
  • Voutsinos-Frantzis, O., Karavidas, I., Petropoulos, D., Zioviris, G., Fortis, D., Ntanasi, T., Ropokis, A., Karkanis, A., Sabatino, L., Savvas, D., and Ntatsi, G. 2023. Effects of NaCl and CaCl2 as eustress factors on growth, yield, and mineral composition of hydroponically grown valerianella locusta. Plants (Basel) 12: 1454. doi:10.3390/plants12071454
  • Weffort, V. R. S., Lamounier, J. A. 2023. Hidden hunger – a narrative review. J de Pediatria. doi:10.1016/j.jped.2023.08.009
  • Wu, M., Buck, J. S., and Kubota, C. 2004. Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponics tomatoes (Lycopersicon esculentum). Acta Horticult. 659: 541–547.
  • Xie, B., Xiao, X., Li, H., Wei, S., Li, J., Gao, Y., and Yu, J. 2023. Moderate salinity of nutrient solution improved the nutritional quality and flavor of hydroponic Chinese chives (Allium tuberosum Rottler). Foods 12: 204. doi:10.3390/foods12010204
  • Yuan, L., Liu, S., Zhu, S., Chen, G., Liu, F., Zou, M., and Wang, C. 2016. Comparative response of two wucai (Brassica campestris L.) genotypes to heat stress on antioxidative system and cell ultrastructure in root. Acta Physiol. Plant. 38. doi:10.1007/s11738-016-2246-z
  • Zamljen, T., Medic, A., Hudina, M., Veberic, R., and Slatnar, A. 2022. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity level. Plants (Basel) 11: 853. doi:10.3390/plants11070853
  • Zhang, W., Dong, A., Liu, F., Niu, W., and Siddique, K.H.M. 2022. Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: a meta-analysis. Soil Tillage Res. 221: 105392. doi:10.1016/j.still.2022.105392
  • Zhang, Z., Sun, D., Tang, Y., Zhu, R., Li, X., Gruda, N., Dong, J., and Duan, Z. 2021. Plastic shed soil salinity in China: current status and next steps. J. Clean Prod. 296: 126453. doi:10.1016/j.jclepro.2021.126453
  • Zhou, B., Lv, N., Wang, Z., and Ye, X. 2010. Effect of grafting to eggplant growth and resistance physiology under NaCl. China Veg. doi:CNKI:SUN:ZGSC.0.2010-20-013
  • Zhou, Y., Tian, Y., and Yang, B. 2023. Root vegetable side streams as sources of functional ingredients for food, nutraceutical and pharmaceutical applications: the current status and future prospects. Trends in Food Sci & Technology 137: 1–16. doi:10.1016/j.tifs.2023.05.006
  • Ziotti, A. B. S., Silva, B. P., Sershen, L., and Neto, M. C. 2019. Photorespiration is crucial for salinity acclimation in castor beans. Envir. Exp. Bot. 167: 103845. doi:10.1016/j.envexpbot.2019.103845
  • Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., and Peres, L. E. P. 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36: 1211–1216. doi:10.1038/nbt.4272
  • Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant. Soil Environ. 53: 283–289. doi:10.17221/2209-PSE
  • Zushi, K., and Matsuzoe, N. 2011. Utilization of correlation network analysis to identify differences in sensory attributes and organoleptic compositions of tomato cultivars grown under salt stress. Sci. Horticult. 129: 18–26. doi:10.1016/j.scienta.2011.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.