107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Harnessing the Transcriptomic Resources of Millets to Decipher Climate Resilience and Nutrient Enrichment Traits

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Ghany, S. E., Ullah, F., Ben-Hur, A., and Reddy, A. S. 2020. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. Int. J. Mol. Sci. 21: 772. doi:10.3390/ijms21030772
  • Abrouk, M., Ahmed, H. I., Cubry, P., Šimoníková, D., Cauet, S., Pailles, Y., Bettgenhaeuser, J., Gapa, L., Scarcelli, N., Couderc, M., Zekraoui, L., Kathiresan, N., Čížková, J., Hřibová, E., Doležel, J., Arribat, S., Bergès, H., Wieringa, J. J., Gueye, M., Kane, N. A., Leclerc, C., Causse, S., Vancoppenolle, S., Billot, C., Wicker, T., Vigouroux, Y., Barnaud, A., and Krattinger, S. G. 2020. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat. Commun. 11: 4488. doi:10.1038/s41467-020-18329-4
  • Akbar, N., Gupta, S., Tiwari, A., Singh, K. P., and Kumar, A. 2018. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation. Gene 649: 40–49. doi:10.1016/j.gene.2018.01.071
  • Alagarasan, G., Dubey, M., Aswathy, K. S., and Chandel, G. 2017. Genome wide identification of orthologous ZIP genes associated with zinc and iron translocation in Setaria italica. Front. Plant Sci. 8: 775. doi:10.3389/fpls.2017.00775
  • Ansari, W. A., Chandanshive, S. U., Bhatt, V., Nadaf, A. B., Vats, S., Katara, J. L., Sonah, H., and Deshmukh, R. 2020. Genome editing in cereals: approaches, applications and challenges. Int. J. Mol. Sci. 21: 4040. doi:10.3390/ijms21114040
  • Araki, R., Takano, Y., Miyazaki, H., Ii, H., and An, P. 2022. Drought stress alters iron accumulation in Sorghum bicolor seeds. Environ. Exp. Bot. 204: 105093. doi:10.1016/j.envexpbot.2022.105093
  • Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C., and Jespersen, D. 2023. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Front. Plant Sci. 14: 1241736. doi:10.3389/fpls.2023.1241736
  • Azameti, M. K., Ranjan, A., Singh, P. K., Gaikwad, K., Singh, A. K., Dalal, M., Arora, A., Rai, V., and Padaria, J. C. 2022. Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765. Sci. Rep. 12: 14831. doi:10.1038/s41598-022-18625-7
  • Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H. 2023. Plants’ response mechanisms to salinity stress. Plants (Basel) 12: 2253. doi:10.3390/plants12122253
  • Banshidhar, Pandey, S., Singh, A., Jaiswal, P., Singh, M. K., Meena, K. R., and Singh, S. K. 2023. The potentialities of omics resources for millet improvement. Funct. Integr. Genom. 23: 210. doi:10.1007/s10142-023-01149-2
  • Bennetzen, J. L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A. C., Estep, M., Feng, L., Vaughn, J. N., Grimwood, J., Jenkins, J., Barry, K., Lindquist, E., Hellsten, U., Deshpande, S., Wang, X., Wu, X., Mitros, T., Triplett, J., Yang, X., Ye, C.-Y., Mauro-Herrera, M., Wang, L., Li, P., Sharma, M., Sharma, R., Ronald, P. C., Panaud, O., Kellogg, E. A., Brutnell, T. P., Doust, A. N., Tuskan, G. A., Rokhsar, D., and Devos, K. M. 2012. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30: 555–561. doi:10.1038/nbt.2196
  • Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T., and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55: 401–425. doi:10.1146/annurev-phyto-080516-035544
  • Brhane, H., Haileselassie, T., Tesfaye, K., Ortiz, R., Hammenhag, C., Abreha, K. B., Vetukuri, R. R., and Geleta, M. 2022. Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources. Front. Plant Sci. 13: 1068383. doi:10.3389/fpls.2022.1068383
  • Cannarozzi, G., Plaza-Wüthrich, S., Esfeld, K., Larti, S., Wilson, Y. S., Girma, D., de Castro, E., Chanyalew, S., Blösch, R., Farinelli, L., Lyons, E., Schneider, M., Falquet, L., Kuhlemeier, C., Assefa, K., and Tadele, Z. 2014. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genom. 15: 1–21. doi:10.1186/1471-2164-15-581
  • Cao, X., Hu, Y., Song, J., Feng, H., Wang, J., Chen, L., Wang, L., Diao, X., Wan, Y., Liu, S., and Qiao, Z. 2022. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet. Int. J. Mol. Sci. 23: 10792. doi:10.3390/ijms231810792
  • Ceasar, S. A., Maharajan, T., and García-Caparrós, P. 2023. Functional residues in plant nutrient transporters: an opportunity for gene editing to improve agronomic traits. Crit. Rev. Plant Sci. 42: 324–343. doi:10.1080/07352689.2023.2243108
  • Chandrashekar, A., and Satyanarayana, K. V. 2006. Disease and pest resistance in grains of sorghum and millets. J. Cereal Sci. 44: 287–304. doi:10.1016/j.jcs.2006.08.010
  • Chaurasia, R. K., and Anichari, N. 2023. Nutritional and health benefits of Millets: A review. Pharma Innov. J. 12: 3360–3363.
  • Chi, W. T., Fung, R. W., Liu, H. C., Hsu, C. C., and Charng, Y. Y. 2009. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant. Cell Environ. 32: 917–927. doi:10.1111/j.1365-3040.2009.01972.x
  • Choudhary, S., Guha, A., Kholova, J., Pandravada, A., Messina, C. D., Cooper, M., and Vadez, V. 2020. Maize, sorghum, and pearl millet have highly contrasting species strategies to adapt to water stress and climate change-like conditions. Plant Sci. 295: 110297. doi:10.1016/j.plantsci.2019.110297
  • Corallo, A. B., Del Palacio, A., Oliver, M., Tiscornia, S., Simoens, M., Cea, J., de Aurrecoechea, I., Martínez, I., Sanchez, A., Stewart, S., and Pan, D. 2023. Fusarium species and mycotoxins associated with sorghum grains in Uruguay. Toxins (Basel) 15: 484. doi:10.3390/toxins15080484
  • Crouch, J. A., Davis, W. J., Shishkoff, N., Castroagudín, V. L., Martin, F., Michelmore, R., and Thines, M. 2022. Peronosporaceae species causing downy mildew diseases of Poaceae, including nomenclature revisions and diagnostic resources. Fungal SysT. Evol. 9: 43–86. doi:10.3114/fuse.2022.09.05
  • Dao, T. T. H., Linthorst, H. J. M., and Verpoorte, R. 2011. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 10: 397–412. doi:10.1007/s11101-011-9211-7
  • Das, R. R., Pradhan, S., and Parida, A. 2020. De-novo transcriptome analysis unveils differentially expressed genes regulating drought and salt stress response in Panicum sumatrense. Sci. Rep. 10: 21251. doi:10.1038/s41598-020-78118-3
  • Desai, H., Hamid, R., Ghorbanzadeh, Z., Bhut, N., Padhiyar, S. M., Kheni, J., and Tomar, R. S. 2021. Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci. Rep. 11: 20620. doi:10.1038/s41598-021-00100-4
  • Devos, K. M., Qi, P., Bahri, B. A., Gimode, D. M., Jenike, K., Manthi, S. J., Lule, D., Lux, T., Martinez-Bello, L., Pendergast, T. H., IV, Plott, C., Saha, D., Sidhu, G. S., Sreedasyam, A., Wang, X., Wang, H., Wright, H., Zhao, J., Deshpande, S., de Villiers, S., Dida, M. M., Grimwood, J., Jenkins, J., Lovell, J., Mayer, K. F. X., Mneney, E. E., Ojulong, H. F., Schatz, M. C., Schmutz, J., Song, B., Tesfaye, K., and Odeny, D. A. 2023. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat. Commun. 14: 3694. doi:10.1038/s41467-023-38915-6
  • Du, X., Wang, G., Ji, J., Shi, L., Guan, C., and Jin, C. 2017. Comparative transcriptome analysis of transcription factors in different maize varieties under salt stress conditions. Plant Growth Regul. 81: 183–195. doi:10.1007/s10725-016-0192-9
  • Dudhate, A., Shinde, H., Tsugama, D., Liu, S., and Takano, T. 2018. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One. 13: e0195908. doi:10.1371/journal.pone.0195908
  • Dugas, D. V., Monaco, M. K., Olson, A., Klein, R. R., Kumari, S., Ware, D., and Klein, P. E. 2011. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom. 12: 1–21.
  • Feeney, M., Kittelmann, M., Menassa, R., Hawes, C., and Frigerio, L. 2018. Protein storage vacuoles originate from remodeled preexisting vacuoles in Arabidopsis thaliana. Plant Physiol. 177: 241–254. doi:10.1104/pp.18.00010
  • Feng, J., Jia, W., Lv, S., Bao, H., Miao, F., Zhang, X., Wang, J., Li, J., Li, D., Zhu, C., Li, S., and Li, Y. 2018. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol. J. 16: 558–571. doi:10.1111/pbi.12795
  • Garcia, J. F. M., and Rodriguez, C. M. 2023. Molecular mechanisms of shade tolerance in plants. New Phytol. 239: 1190–1202. doi:10.1111/nph.19047
  • Gill, S. S., and Tuteja, N. 2011. Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal. Behav. 6: 215–222. doi:10.4161/psb.6.2.14880
  • Grundy, J., Stoker, C., and Carré, I. A. 2015. Circadian regulation of abiotic stress tolerance in plants. Front. Plant Sci. 6: 144921. doi:10.3389/fpls.2015.00648
  • Gu, S., Abid, M., Bai, D., Chen, C., Sun, L., Qi, X., Zhong, Y., and Fang, J. 2023. Transcriptome-wide identification and functional characterization of CIPK gene family members in Actinidia valvata under salt stress. Int. J. Mol. Sci. 24: 805. doi:10.3390/ijms24010805
  • Guo, J., Huang, Z., Sun, J., Cui, X., and Liu, Y. 2021. Research progress and future development trends in medicinal plant transcriptomics. Front. Plant Sci. 12: 691838. doi:10.3389/fpls.2021.691838
  • Guo, L., Qiu, J., Ye, C., Jin, G., Mao, L., Zhang, H., Yang, X., Peng, Q., Wang, Y., Jia, L., Lin, Z., Li, G., Fu, F., Liu, C., Chen, L., Shen, E., Wang, W., Chu, Q., Wu, D., Wu, S., Xia, C., Zhang, Y., Zhou, X., Wang, L., Wu, L., Song, W., Wang, Y., Shu, Q., Aoki, D., Yumoto, E., Yokota, T., Miyamoto, K., Okada, K., Kim, D.-S., Cai, D., Zhang, C., Lou, Y., Qian, Q., Yamaguchi, H., Yamane, H., Kong, C.-H., Timko, M. P., Bai, L., and Fan, L. 2017. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat. Commun. 8: 1031. doi:10.1038/s41467-017-01067-5
  • Guo, Y., Hao, D., Wang, X., Wang, H., Wu, Z., Yang, P., and Zhang, B. 2023. Comparative transcriptomics reveals key genes contributing to the differences in drought tolerance among three cultivars of foxtail millet (Setaria italica). Plant Growth Regul. 99: 45–64. doi:10.1007/s10725-022-00875-0
  • Gupta, B., and Huang, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genom. 701596: 1–18. doi:10.1155/2014/701596
  • Gururani, K., Kumar, A., Tiwari, A., Agarwal, A., Gupta, S., and Pandey, D. 2020. Transcriptome wide identification and characterization of regulatory genes involved in EAA metabolism and validation through expression analysis in different developmental stages of finger millet spikes. 3 Biotech. 10: 347. doi:10.1007/s13205-020-02337-8
  • Habiyaremye, C., Matanguihan, J. B., D’Alpoim Guedes, J., Ganjyal, G. M., Whiteman, M. R., Kidwell, K. K., and Murphy, K. M. 2017. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: a review. Front. Plant Sci. 7: 228916. doi:10.3389/fpls.2016.01961
  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M., and Farooq, M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211: 111887. doi:10.1016/j.ecoenv.2020.111887
  • Han, F., Sun, M., He, W., Guo, S., Feng, J., Wang, H., Yang, Q., Pan, H., Lou, Y., and Zhuge, Y. 2022. Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of foxtail millet (Setaria italica l.). Plants 11: 1864. doi:10.3390/plants11141864
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., and Fujita, M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14: 9643–9684. doi:10.3390/ijms14059643
  • Hassan, Z. M., Sebola, N. A., and Mabelebele, M. 2021. The nutritional use of millet grain for food and feed: a review. Agricl. Food Sec. 10: 1–14. doi:10.1186/s40066-020-00282-6
  • Hatakeyama, M., Aluri, S., Balachadran, M. T., Sivarajan, S. R., Patrignani, A., Grüter, S., Poveda, L., Shimizu-Inatsugi, R., Baeten, J., Francoijs, K.-J., Nataraja, K. N., Reddy, Y. A. N., Phadnis, S., Ravikumar, R. L., Schlapbach, R., Sreeman, S. M., and Shimizu, K. K. 2018. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. 25: 39–47. doi:10.1093/dnares/dsx036
  • Hittalmani, S., Mahesh, H. B., Shirke, M. D., Biradar, H., Uday, G., Aruna, Y. R., Lohithaswa, H. C., and Mohanrao, A. 2017. Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genom. 18: 1–16. doi:10.1186/s12864-017-3850-z
  • Huang, Y., Li, D., Zhao, L., Chen, A., Li, J., Tang, H., Pan, G., Chang, L., Deng, Y., and Huang, S. 2019. Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars. Ind. Crops Pro. 140: 111638. doi:10.1016/j.indcrop.2019.111638
  • Ignacimuthu, S., and Ceasar, S. A. 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J. Biosci. 37: 135–147. doi:10.1007/s12038-011-9178-y
  • Iijima, M., Awala, S. K., Watanabe, Y., Kawato, Y., Fujioka, Y., Yamane, K., and Wada, K. C. 2016. Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops. J. Plant Physiol. 192: 21–25. doi:10.1016/j.jplph.2016.01.004
  • Jain, A. 2023. Seed storage protein, functional diversity and association with allergy. Allergies 3: 25–38. doi:10.3390/allergies3010003
  • Jaiswal, S., Antala, T. J., Mandavia, M. K., Chopra, M., Jasrotia, R. S., Tomar, R. S., Kheni, J., Angadi, U. B., Iquebal, M. A., Golakia, B. A., Rai, A., and Kumar, D. 2018. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8: 3382. doi:10.1038/s41598-018-21560-1
  • Jayakodi, M., Madheswaran, M., Adhimoolam, K., Perumal, S., Manickam, D., Kandasamy, T., Yang, T.-J., and Natesan, S. 2019. Transcriptomes of Indian barnyard millet and barnyardgrass reveal putative genes involved in drought adaptation and micronutrient accumulation. Acta Physiol. Plant. 41: 1–11. doi:10.1007/s11738-019-2855-4
  • Jeon, D., Kim, J. B., Kang, B. C., and Kim, C. 2023. Deciphering the Genetic Mechanisms of Salt Tolerance in Sorghum bicolor L.: Key Genes and SNP Associations from Comparative Transcriptomic Analyses. Plants 12: 2639. doi:10.3390/plants12142639
  • Ji, Y., Lu, X., Zhang, H., Luo, D., Zhang, A., Sun, M., Wu, Q., Wang, X., and Huang, L. 2021. Transcriptome reveals the dynamic response mechanism of pearl millet roots under drought stress. Genes (Basel) 12: 1988. doi:10.3390/genes12121988
  • Jidda, M. B., and Anaso, A. B. 2017. Effects of crop improvement technologies on downy mildew of pearl millet [Pennisetum glaucum (L.) R. Br. J. Cereals Oilseeds 8: 14–20. doi:10.5897/JCO2017.0172
  • Jin, F., Liu, J., Wu, E., Yang, P., Gao, J., Gao, X., and Feng, B. 2021. Leaf transcriptome analysis of broomcorn millet uncovers key genes and pathways in response to sporisorium destruens. Int. J. Mol. Sci. 22: 9542. doi:10.3390/ijms22179542
  • Johnson, S. M., Lim, F. L., Finkler, A., Fromm, H., Slabas, A. R., and Knight, M. R. 2014. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom. 15: 456. doi:10.1186/1471-2164-15-456
  • Kane-Potaka, J., Anitha, S., Tsusaka, T. W., Botha, R., Budumuru, M., Upadhyay, S., Kumar, P., Mallesh, K., Hunasgi, R., Jalagam, A. K., and Nedumaran, S. 2021. Assessing millets and sorghum consumption behavior in urban India: A large-scale survey. Front. Sustain. Food Syst. 5: 680777. doi:10.3389/fsufs.2021.680777
  • Kang, D. J., Seo, Y. J., Futakuchi, K., Vijarnsorn, P., and Ishii, R. 2011. Effect of aluminum toxicity on flowering time and grain yield on rice genotypes differing in Al-tolerance. J. Crop Sci. Biotechnol. 14: 305–309. doi:10.1007/s12892-011-0056-9
  • Kang, S. H., Kim, B., Choi, B. S., Lee, H. O., Kim, N. H., Lee, S. J., and Kim, C. K. 2020. Genome assembly and annotation of soft-shelled adlay (Coix lacryma-jobi Variety ma-yuen), a cereal and medicinal crop in the Poaceae family. Front. Plant Sci. 11, 630. https://doi.org/10.3389/fpls.2020.00630
  • Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F. W., Li, X. W., and Li, H. Y. 2019. Adaptation of plants to salt stress: characterization of Na + and K + transporters and role of CBL gene family in regulating salt stress response. Agronomy 9: 687. doi:10.3390/agronomy9110687
  • Kheya, S. A., Talukder, S. K., Datta, P., Yeasmin, S., Rashid, M. H., Hasan, A. K., Anwar, M. P., Islam, A. K. M. A., and Islam, A. K. M. M. 2023. Millets: the future crops for the tropics-Status, challenges and future prospects. Heliyon 9: e22123. doi:10.1016/j.heliyon.2023.e22123
  • Khorwal, S., Sharma, S., and Agrawal, K. 2023. A review of: epidemiology and management practices of fungal and bacterial diseases of pearl millet [Pennisetum glaucum (L.) R. Br.]. AJOB. 17: 1–10. doi:10.9734/ajob/2023/v17i3322
  • Kimotho, R. N., Baillo, E. H., and Zhang, Z. 2019. Transcription factors involved in abiotic stress responses in maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ. 7: e7211. doi:10.7717/peerj.7211
  • Krishna, T. P. A., Maharajan, T., Antony Ceasar, S., and Ignacimuthu, S. 2023. Zinc supply influences the root-specific traits with the expression of root architecture modulating genes in millets. J. Soil Sci. Plant Nutr. 23: 5527–5541. doi:10.1007/s42729-023-01419-9
  • Kulkarni, K. S., Zala, H. N., Bosamia, T. C., Shukla, Y. M., Kumar, S., Fougat, R. S., Patel, M. S., Narayanan, S., and Joshi, C. G. 2016. De novo transcriptome sequencing to dissect candidate genes associated with pearl millet-downy mildew (Sclerospora graminicola Sacc.) interaction. Front. Plant Sci. 7: 847. doi:10.3389/fpls.2016.00847
  • Kumar, A., Gaur, V. S., Goel, A., and Gupta, A. K. 2015. De novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol. Biol. Rep. 33: 905–922. doi:10.1007/s11105-014-0802-5
  • Kumar, A., Tomer, V., Kaur, A., Kumar, V., and Gupta, K. 2018. Millets: a solution to agrarian and nutritional challenges. Agric. Food Secur. 7: 1–15. doi:10.1186/s40066-018-0183-3
  • Kumar, V. V. S., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V., and Chinnusamy, V. 2020. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol. Mol. Biol. Plants. 26: 1099–1110. doi:10.1007/s12298-020-00819-w
  • Kumar, S., and Trivedi, P. K. 2016. Transcriptome modulation in rice under abiotic stress. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress; Azooz, M. M. and Ahmad, P., Eds. Wiley Online Library, Hoboken, New Jersey, USA. pp 70–83. doi: 10.1002/9781119081005.ch4
  • Li, R., Han, Y., Zhang, Q., Chang, G., Han, Y., Li, X., and Zhang, B. 2020. Transcriptome profiling analysis reveals co-regulation of hormone pathways in foxtail millet during Sclerospora graminicola infection. Int. J. Mol. Sci. 21: 1226. doi:10.3390/ijms21041226
  • Li, J., Wang, Y., Wang, L., Zhu, J., Deng, J., Tang, R., and Chen, G. 2021a. Integration of transcriptomic and proteomic analyses for finger millet [Eleusine coracana (L.) Gaertn.] in response to drought stress. PLos One. 16: e0247181. doi:10.1371/journal.pone.0247181
  • Li, X. D., Pan, H., Lu, X. J., Wei, X. Y., Shi, M., and Lu, P. 2021b. Complete chloroplast genome sequencing of Job’s tears (Coix l.): Genome structure, comparative analysis, and phylogenetic relationships. Mitochondrial DNA. B Resour. 6: 1399–1405. doi:10.1080/23802359.2021.1911704
  • Li, Y., Wu, X., Zhang, Y., and Zhang, Q. 2022. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front. Genome Ed. 4: 987817. doi:10.3389/fgeed.2022.987817
  • Ligaba-Osena, A., Salehin, M., Numan, M., Wang, X., Choi, S.-C., Jima, D., Bobay, L.-M., and Guo, W. 2022. Genome-wide transcriptome analysis of the orphan crop tef (Eragrostis tef (Zucc.) Trotter) under long-term low calcium stress. Sci. Rep. 12: 19552. doi:10.1038/s41598-022-23844-z
  • Liu, D., Cui, Y., Zhao, Z., Zhang, J., Li, S., and Liu, Z. 2022a. Transcriptome analysis and mining of genes related to shade tolerance in foxtail millet (Setaria italica (L.) P. Beauv.). R Soc. Open Sci. 9: 220953. doi:10.1098/rsos.220953
  • Liu, H., Du, Y., Chu, H., Shih, C. H., Wong, Y. W., Wang, M., Chu, I. K., Tao, Y., and Lo, C. 2010. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol. 51: 1173–1185. doi:10.1093/pcp/pcq080
  • Liu, J., Zhang, D., Zhang, Y., Zhou, H., Chen, P., Yuan, Y., Yang, Q., Zhao, L., and Feng, B. 2022b. Dynamic and comparative transcriptome analyses reveal key factors contributing to cadmium tolerance in broomcorn millet. Int. J. Mol. Sci. 23: 6148. doi:10.3390/ijms23116148
  • Liu, Z., Xin, M., Qin, J., Peng, H., Ni, Z., Yao, Y., and Sun, Q. 2015. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 15: 152. doi:10.1186/s12870-015-0511-8
  • Lydia-Pramitha, J., Ganesan, J., Francis, N., Rajasekharan, R., and Thinakaran, J. 2022. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front. Genet. 13: 1007552. doi:10.3389/fgene.2022.1007552
  • Ma, Y., Dias, M. C., and Freitas, H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11: 591911. doi:10.3389/fpls.2020.591911
  • Maharajan, T., Antony Ceasar, S., Ajeesh Krishna, T. P., and Ignacimuthu, S. 2021. Finger millet [Eleusine coracana (L.) Gaertn]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front. Sustain. Food Syst. 5: 684447. doi:10.3389/fsufs.2021.684447
  • Maharajan, T., Ceasar, S. A., Ajeesh Krishna, T. P., Ramakrishnan, M., Duraipandiyan, V., Naif Abdulla, A. D., and Ignacimuthu, S. 2018. Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breed 137: 10–26. doi:10.1111/pbr.12537
  • Maharajan, T., Ceasar, S. A., Krishna, T. P. A., and Ignacimuthu, S. 2019. Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250: 1433–1448. doi:10.1007/s00425-019-03237-9
  • Maharajan, T., Krishna, T. P. A., Ceasar, S. A., and Ignacimuthu, S. 2023a. Zinc supply influenced the growth, yield, zinc content, and expression of ZIP family transporters in sorghum. Planta 257: 44. doi:10.1007/s00425-023-04076-5
  • Maharajan, T., Krishna, T. P. A., Krishnakumar, N. M., Vetriventhan, M., Kudapa, H., and Ceasar, S., A. 2024. Role of genome sequences of major and minor millets in strengthening food and nutritional security for future generations. Agriculture 14: 670. doi:10.3390/agriculture14050670
  • Maharajan, T., Krishna, T. A., Rakkammal, K., Ceasar, S. A., and Ramesh, M. 2022. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 256: 106. doi:10.1007/s00425-022-04023-w
  • Maharajan, T., Krishna, T. P. A., Shilpha, J., and Ceasar, S. A. 2023b. Effects of individual or combined deficiency of phosphorous and zinc on phenotypic, nutrient uptake, and molecular responses of finger millet (Eleusine coracana): a nutri-rich cereal crop. Plants (Basel) 12: 3378. doi:10.3390/plants12193378
  • Maibam, A., Lone, S. A., Ningombam, S., Gaikwad, K., Amitha Mithra, S. V., Singh, M. P., Singh, S. P., Dalal, M., and Padaria, J. C. 2022. Transcriptome analysis of Pennisetum glaucum (L.) R. Br. provides insight into heat stress responses. Front. Genet. 13: 884106. doi:10.3389/fgene.2022.884106
  • Majzoobi, M., Jafarzadeh, S., Teimouri, S., Ghasemlou, M., Hadidi, M., and Brennan, C. S. 2023. The role of ancient grains in alleviating hunger and malnutrition. Foods 12: 2213. doi:10.3390/foods12112213
  • Manzano, A., Carnero-Diaz, E., Herranz, R., and Medina, F. J. 2022. Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environments. ISCI 25: 104687. doi:10.1016/j.isci.2022.104687
  • Mcdermaid, A., Monier, B., Zhao, J., Liu, B., and Ma, Q. 2019. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief. Bioinform. 20: 2044–2054. doi:10.1093/bib/bby067
  • Mizuno, H., Kawahigashi, H., Kawahara, Y., Kanamori, H., Ogata, J., Minami, H., Itoh, T., and Matsumoto, T. 2012. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction. BMC Plant Biol. 12: 121. doi:10.1186/1471-2229-12-121
  • Mohan, N., Ahlawat, J., Sharma, L., Pal, A., Rao, P., Redhu, M., Singh, V., Rani, N., Kumari, K., Kaur, T., Yadav, S. Prateek., and Jogender, 2023. Engineered nanoparticles a novel approach in alleviating abiotic and biotic stress in millets: a complete study. Plant Stress 10: 100223. doi:10.1016/j.stress.2023.100223
  • Moharil, M. P., Gangurde, S. S., Ingle, K. P., Khelurkar, V. C., Jadhav, P. V., Ghorade, R. B., Jadhao, S. M., Katkar, R. N., Dudhare, M. S., and Deshmukh, A. G. 2017. Molecular characterization of metal homeostasis related gene orthologs in nutri-rich foxtail millet accessions. AU. 12: 409–420. doi:10.15740/HAS/AU/12.TECHSEAR(2)2017/409-420
  • Mude, L. N., Mondam, M., Gujjula, V., Jinka, S., Pinjari, O. B., Yellodu Adi Reddy, N., and Patan, S. S. V. K. 2020. Morpho-physiological and biochemical changes in finger millet [Eleusine coracana (L.) Gaertn.] under drought stress. Physiol. Mol. Biol. Plants. 26: 2151–2171. doi:10.1007/s12298-020-00909-9
  • Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Nazim, M., Liu, Y.-H., Li, L., and Li, W.-J. 2023. Soil salinity and drought tolerance: an evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress 11: 100319. doi:10.1016/j.stress.2023.100319
  • Mukami, A., Ngetich, A., Mweu, C., Oduor, R. O., Muthangya, M., and Mbinda, W. M. 2019. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiol. Mol. Biol. Plants. 25: 837–846. doi:10.1007/s12298-019-00679-z
  • Muthuramalingam, P., Krishnan, S. R., Pothiraj, R., and Ramesh, M. 2017. Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front. Plant Sci. 8: 238868. doi:10.3389/fpls.2017.00759
  • Ndiaye, A., Diallo, A. O., Fall, N. C., Diouf, R. D., Diouf, D., and Kane, N. A. 2022. Transcriptomic analysis of methyl jasmonate treatment reveals gene networks involved in drought tolerance in pearl millet. Sci. Rep. 12: 5158. doi:10.1038/s41598-022-09152-6
  • Nida, H., Lee, S., Li, Y., and Mengiste, T. 2021. Transcriptome analysis of early stages of sorghum grain mold disease reveals defense regulators and metabolic pathways associated with resistance. BMC Genom. 22: 1–17. doi:10.1186/s12864-021-07609-y
  • Nievola, C. C., Carvalho, C. P., Carvalho, V., and Rodrigues, E. 2017. Rapid responses of plants to temperature changes. Temperature (Austin) 4: 371–405. doi:10.1080/23328940.2017.1377812
  • Numan, M., Serba, D. D., and Ligaba-Osena, A. 2021. Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes (Basel) 12: 739. doi:10.3390/genes12050739
  • Ofori, K. F., Antoniello, S., English, M. M., and Aryee, A., N. 2022. Improving nutrition through biofortification–a systematic review. Front. Nutr. 9: 1043655. doi:10.3389/fnut.2022.1043655
  • Okay, S., Derelli, E., and Unver, T. 2014. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress. Mol. Genet. Genom. 289: 765–781. doi:10.1007/s00438-014-0849-x
  • Padhiyar, S. M., Kheni, J., Bhatt, S. B., Desai, H., and Tomar, R. S. 2023. Comparative transcriptome profiling of high and low grain-iron containing Indian barnyard millet (Echinochloa frumentacea L.) genotypes during different stages of grain development. Preprint. 1–26 doi:10.21203/rs.3.rs-2624534/v1
  • Pahari, S., Vaid, N., Soolanayakanahally, R., Kagale, S., Pasha, A., Esteban, E., Provart, N., Stobbs, J. A., Vu, M., Meira, D., Karunakaran, C., Boda, P., Prasannakumar, M. K., Nagaraja, A., and Jain, A. K. 2024. Nutri-cereal tissue-specific transcriptome atlas during development: functional integration of gene expression to identify mineral uptake pathways in little millet (Panicum sumatrense). Plant J. 1–18. doi:10.1080/07352689.2024.2307240
  • Pan, J., Li, Z., Dai, S., Ding, H., Wang, Q., Li, X., Ding, G., Wang, P., Guan, Y., and Liu, W. 2020. Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci. Rep. 10: 13660. doi:10.1038/s41598-020-70520-1
  • Park, C. J., and Shin, R. 2022. Calcium channels and transporters: roles in response to biotic and abiotic stresses. Front. Plant Sci. 13: 964059. doi:10.3389/fpls.2022.964059
  • Parvathi, M. S., Nataraja, K. N., Reddy, Y. N., Naika, M. B., and Gowda, M. C. 2019. Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes. J. Genet. 98: 46. doi:10.1007/s12041-019-1087-0
  • Patel, G. S., Dubey, M., and Chandel, G. 2015. Characterization of metal homeostasis related rice gene orthologs in nutri-rich minor millets. Int. J. Plant Anim. Environ. Sci. 5: 14–23.
  • Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A. K., Chapman, J., Feltus, F. A., Gowik, U., Grigoriev, I. V., Lyons, E., Maher, C. A., Martis, M., Narechania, A., Otillar, R. P., Penning, B. W., Salamov, A. A., Wang, Y., Zhang, L., Carpita, N. C., Freeling, M., Gingle, A. R., Hash, C. T., Keller, B., Klein, P., Kresovich, S., McCann, M. C., Ming, R., Peterson, D. G., Ware, D., Westhoff, P., Mayer, K. F. X., Messing, J., Rokhsar, D. S. and Mehboob-Ur-Rahman, 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556. doi:10.1038/nature07723
  • Poonacha, T. T., Bhavana, C. S., Ramesh, G. V., Gavayi, N., Koti, P. S., Palanna, K. B., and Das, I. K. 2023. Blast disease of millets: present status and future perspectives. In Millets-Rediscover Ancient Grains; Yadav, L. and Upasana. Intech Open. London, UK. doi:10.5772/intechopen.111392
  • Puranik, S., Kam, J., Sahu, P. P., Yadav, R., Srivastava, R. K., Ojulong, H., and Yadav, R. 2017. Harnessing finger millet to combat calcium deficiency in humans: challenges and prospects. Front. Plant Sci. 8: 281391. doi:10.3389/fpls.2017.01311
  • Puri, H., Grover, S., Pingault, L., Sattler, S. E., and Louis, J. 2023. Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids. BMC Genom. 24: 441.
  • Rahman, H., Jagadeeshselvam, N., Valarmathi, R., Sachin, B., Sasikala, R., Senthil, N., Sudhakar, D., Robin, S., and Muthurajan, R. 2014. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol. Biol. 85: 485–503. doi:10.1007/s11103-014-0199-4
  • Rahman, R., and Upadhyaya, H. 2021. Aluminium toxicity and its tolerance in plant: a review. J. Plant Biol. 64: 101–121. doi:10.1007/s12374-020-09280-4
  • Rakkammal, K., Maharajan, T., Shriram, R. N., Ram, P. J., Ceasar, S. A., and Ramesh, M. 2023. Physiological, biochemical and molecular responses of finger millet (Eleusine coracana) genotypes exposed to short-term drought stress induced by PEG-6000. South Afr. J. Bot. 155: 45–59. doi:10.1016/j.sajb.2023.01.053
  • Rakkammal, K., Pandian, S., and Ramesh, M. 2024. Physiological and biochemical response of finger millet plants exposed to arsenic and nickel stress. Plant Stress 11: 100389. doi:10.1016/j.stress.2024.100389
  • Rani, B., and Sharma, V. K. 2017. Transcriptome profiling: methods and applications-a review. AG. 38: 271–281. doi:10.18805/ag.R-1549
  • Rani, V., Joshi, D. C., Joshi, P., Singh, R., and Yadav, D. 2023. “Millet models” for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. Planta 258: 29. doi:10.1007/s00425-023-04186-0
  • Rani, V., Rana, S., Muthamilarasan, M., Joshi, D. C., and Yadav, D. 2024. Expression profiling of nuclear factor-Y (NF-Y) transcription factors during dehydration and salt stress in finger millet reveals potential candidate genes for multiple stress tolerance. Planta 259: 136. doi:10.1007/s00425-024-04417-y
  • Roch, G. V., Maharajan, T., Ceasar, S. A., and Ignacimuthu, S. 2019. The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit. Rev. Plant Sci. 38: 171–198. doi:10.1080/07352689.2019.1645402
  • Saidi, M. N., Mahjoubi, H., and Yacoubi, I. 2023. Transcriptome meta-analysis of abiotic stresses-responsive genes and identification of candidate transcription factors for broad stress tolerance in wheat. Protoplasma 260: 707–721. doi:10.1007/s00709-022-01807-5
  • Samtiya, M., Aluko, R. E., Dhaka, N., Dhewa, T., and Puniya, A. K. 2023. Nutritional and health-promoting attributes of millet: current and future perspectives. Nutr. Rev. 81: 684–704. doi:10.1093/nutrit/nuac081
  • Satyavathi, C. T., Tomar, R. S., Ambawat, S., Kheni, J., Padhiyar, S. M., Desai, H., Bhatt, S. B., Shitap, M. S., Meena, R. C., Singhal, T., Sankar, S. M., Singh, S. P., and Khandelwal, V. 2022. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci. Rep. 12: 276. doi:10.1038/s41598-021-04388-0
  • Saxena, R., Vanga, S. K., Wang, J., Orsat, V., and Raghavan, V. 2018. Millets for food security in the context of climate change: a review. Sustainability 10: 2228. doi:10.3390/su10072228
  • Sebastin, R., Lee, G.-A., Lee, K. J., Shin, M.-J., Cho, G.-T., Lee, J.-R., Ma, K.-H., and Chung, J.-W. 2018. The complete chloroplast genome sequences of little millet (Panicum sumatrense Roth ex Roem. and Schult.) (Poaceae). Mitochondrial DNA. B Resour. 3: 719–720. doi:10.1080/23802359.2018.1483771
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., and Battaglia, M. L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel) 10: 259. doi:10.3390/plants10020259
  • Serba, D. D., Meng, X., Schnable, J., Bashir, E., Michaud, J. P., Vara Prasad, P. V., and Perumal, R. 2021. Comparative transcriptome analysis reveals genetic mechanisms of sugarcane aphid resistance in grain Sorghum. Int. J. Mol. Sci. 22: 7129. doi:10.3390/ijms22137129
  • Shankar, R., Bhattacharjee, A., and Jain, M. 2016. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci. Rep. 6: 23719. doi:10.1038/srep23719
  • Sheoran, S., Kumar, S., Ramtekey, V., Kar, P., Meena, R. S., and Jangir, C. K. 2022. Current status and potential of biofortification to enhance crop nutritional quality: an overview. Sustainability 14: 3301. doi:10.3390/su14063301
  • Shinde, H., Tanaka, K., Dudhate, A., Tsugama, D., Mine, Y., Kamiya, T., K. Gupta, S., Liu, S., and Takano, T. 2018. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exper. Bot. 155: 619–627. doi:10.1016/j.envexpbot.2018.07.008
  • Shivhare, R., Asif, M. H., and Lata, C. 2020a. Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mol. Biol. 103: 639–652.
  • Shivhare, R., Lakhwani, D., Asif, M. H., Chauhan, P. S., and Lata, C. 2020b. De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. Nucleus 63: 341–352. doi:10.1007/s13237-020-00324-1
  • Shrestha, N., Hu, H., Shrestha, K., and Doust, A. N. 2023. Pearl millet response to drought: a review. Front. Plant Sci. 14: 1059574. doi:10.3389/fpls.2023.1059574
  • Singh, S., Parihar, P., Singh, R., Singh, V. P., and Prasad, S. M. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6: 1143. doi:10.3389/fpls.2015.01143
  • Singh, U. M., Chandra, M., Shankhdhar, S. C., and Kumar, A. 2014. Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLos One. 9: e103963. doi:10.1371/journal.pone.0103963
  • Sood, S., Chaudhary, D. R., Jhorar, P., Rana, R. S. and Avnee, 2023. Biofortification: an approach to eradicate micronutrient deficiency. Front. Nutr. 10: 1233070. doi:10.3389/fnut.2023.1233070
  • Sood, S., Joshi, D. C., Chandra, A. K., and Kumar, A. 2019. Phenomics and genomics of finger millet: current status and future prospects. Planta 250: 731–751. doi:10.1007/s00425-019-03159-6
  • Sun, X., Zheng, H., Li, J., Liu, L., Zhang, X., and Sui, N. 2020a. Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Front. Bioeng. Biotechn. 8: 331. doi:10.3389/fbioe.2020.00331
  • Sun, M., Lin, C., Zhang, A., Wang, X., Yan, H., Khan, I., and Huang, L. 2021. Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress. J. Agron. Crop Sci. 207: 768–773.
  • Suresh, B. V., Choudhary, P., Aggarwal, P. R., Rana, S., Singh, R. K., Ravikesavan, R., Prasad, M., and Muthamilarasan, M. 2022. De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics 114: 110347. doi:10.1016/j.ygeno.2022.110347
  • Tegegne, G., Abebe, F., Temam Hussien, T. T., Belete, E., Ayalew, M., Demese, G., and Meles, K. 2006. Review of maize, sorghum and millet pathology research. Increasing Crop Production through Improved Plant Protection, Volume I, 245.
  • Tiwari, H., Naresh, R. K., Kumar, L., Kataria, S. K., Tewari, S., Saini, A., Yadav, R. K., and Asati, R. 2022. Millets for food and nutritional security for small and marginal farmers of North West India in the context of climate change: a review. IJPSS. 34: 1694–1705. doi:10.9734/ijpss/2022/v34i232594
  • Tombuloglu, H., Kekec, G., Sakcali, M. S., and Unver, T. 2013. Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol. Genet. Genom. 288: 141–155. doi:10.1007/s00438-013-0740-1
  • Tripathi, G., Jitendrakumar, P. H., Borah, A., Nath, D., Das, H., Bansal, S., Singh, N., and Singh, B. V. 2023. A review on nutritional and health benefits of millets. IJPSS. 35: 1736–1743. doi:10.9734/ijpss/2023/v35i193722
  • Tripathi, T., and Vyas, S. 2023. From ancient grains to modern solutions: a history of millets and their significance in agriculture and food security. Int. J. Home Sci. 9: 72–78.
  • Tyagi, P., Singh, D., Mathur, S., Singh, A., and Ranjan, R. 2022. Upcoming progress of transcriptomics studies on plants: an overview. Front. Plant Sci. 13: 1030890. doi:10.3389/fpls.2022.1030890
  • Ukwatta, J., Pabuayon, I. C. M., Park, J., Chen, J., Chai, X., Zhang, H., Zhu, J.-K., Xin, Z., and Shi, H. 2021. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Planta 254: 98. doi:10.1007/s00425-021-03750-w
  • Valle, S. R., Carrasco, J., Pinochet, D., and Calderini, D. F. 2009. Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions. Plant Soil 318: 299–310. doi:10.1007/s11104-008-9841-8
  • Varoquaux, N., Cole, B., Gao, C., Pierroz, G., Baker, C. R., Patel, D., and Purdom, E. 2019. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Nat. Acad. Sci. 116: 27124–27132.
  • Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., Srivastava, R. K., Chitikineni, A., Fan, G., Bajaj, P., Punnuri, S., Gupta, S. K., Wang, H., Jiang, Y., Couderc, M., Katta, M. A. V. S. K., Paudel, D. R., Mungra, K. D., Chen, W., Harris-Shultz, K. R., Garg, V., Desai, N., Doddamani, D., Kane, N. A., Conner, J. A., Ghatak, A., Chaturvedi, P., Subramaniam, S., Yadav, O. P., Berthouly-Salazar, C., Hamidou, F., Wang, J., Liang, X., Clotault, J., Upadhyaya, H. D., Cubry, P., Rhoné, B., Gueye, M. C., Sunkar, R., Dupuy, C., Sparvoli, F., Cheng, S., Mahala, R. S., Singh, B., Yadav, R. S., Lyons, E., Datta, S. K., Hash, C. T., Devos, K. M., Buckler, E., Bennetzen, J. L., Paterson, A. H., Ozias-Akins, P., Grando, S., Wang, J., Mohapatra, T., Weckwerth, W., Reif, J. C., Liu, X., Vigouroux, Y., and Xu, X. 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35: 969–976. doi:10.1038/nbt.3943
  • Vedenicheva, N., and Kosakivska, I. 2023. In search of the phytohormone functions in fungi: cytokinins. Fun. Biol. Rev. 45: 100309. doi:10.1016/j.fbr.2023.100309
  • Wang, J., Sun, Z., Wang, X., Tang, Y., Li, X., Ren, C., Ren, J., Wang, X., Jiang, C., Zhong, C., Zhao, S., Zhang, H., Liu, X., Kang, S., Zhao, X., and Yu, H. 2022. Transcriptome-based analysis of key pathways relating to yield formation stage of foxtail millet under different drought stress conditions. Front. Plant Sci. 13: 1110910. doi:10.3389/fpls.2022.1110910
  • Wang, J., Vanga, S. K., Saxena, R., Orsat, V., and Raghavan, V. 2018. Effect of climate change on the yield of cereal crops: a review. Climate 6: 41. doi:10.3390/cli6020041
  • Wang, Y., Zhan, D. F., Li, H. L., Guo, D., Zhu, J. H., and Peng, S. Q. 2017. Transcriptome-wide identification and characterization of MYB transcription factor genes in the laticifer cells of Hevea brasiliensis. Front. Plant Sci. 8: 1974. doi:10.3389/fpls.2017.01974
  • Wang, Z., and Wei, Y. 2022. Physiological and transcriptomic analysis of antioxidant mechanisms in sweet sorghum seedling leaves in response to single and combined drought and salinity stress. J. Plant Interact. 17: 1006–1016. doi:10.1080/17429145.2022.2146771
  • Wei, X., Jin, X., Ndayambaza, B., Min, X., Zhang, Z., Wang, Y., and Liu, W. 2019. Transcriptome-wide characterization and functional identification of the aquaporin gene family during drought stress in common vetch. DNA Cell Biol. 38: 374–384. doi:10.1089/dna.2018.4562
  • Wen, Y., Cheng, L., Zhao, Z., An, M., Zhou, S., Zhao, J., Dong, S., Yuan, X., and Yin, M. 2024. Transcriptome and co-expression network revealed molecular mechanism underlying selenium response of foxtail millet (Setaria italica). Front. Plant Sci. 15: 1355518. doi:10.3389/fpls.2024.1355518
  • Witkowska, D., Słowik, J., and Chilicka, K. 2021. Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules 26: 6060. doi:10.3390/molecules26196060
  • Wong, C., Alabadí, D., and Blázquez, M. A. 2023. Spatial regulation of plant hormone action. J. Exp. Bot. 74: 6089–6103. doi:10.1093/jxb/erad244
  • Wu, X.-Y., Hu, W.-J., Luo, H., Xia, Y., Zhao, Y., Wang, L.-D., Zhang, L.-M., Luo, J.-C., and Jing, H.-C. 2016. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Mol. Biol. 92: 555–580. doi:10.1007/s11103-016-0532-1
  • Xu, B. Q., Gao, X. L., Gao, J. F., Jing, L. I., Pu, Y. A. N. G., and Feng, B. L. 2019. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000. J. Int. Agric. 18: 2457–2471. doi:10.1016/S2095-3119(19)62576-1
  • Yang, C., and Li, L. 2017. Hormonal regulation in shade avoidance. Front. Plant Sci. 8: 290176. doi:10.3389/fpls.2017.01527
  • Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y., and Yang, Y. 2021. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. Int. J. Mol. Sci. 22: 9599. doi:10.3390/ijms22179599
  • Yang, J., Li, L., Zhang, X., Wu, S., Han, X., Li, X., and Xu, J. 2022. Comparative transcriptomics analysis of roots and leaves under Cd stress in Calotropis gigantea L. Int. J. Mol. Sci. 23: 3329. doi:10.3390/ijms23063329
  • Yang, Z., Zheng, H., Wei, X., Song, J., Wang, B., and Sui, N. 2018. Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant Soil 430: 423–439. doi:10.1007/s11104-018-3736-0
  • Yi, F., Huo, M., Li, J., and Yu, J. 2022. Time-series transcriptomics reveals a drought-responsive temporal network and crosstalk between drought stress and the circadian clock in foxtail millet. Plant J. 110: 1213–1228. doi:10.1111/tpj.15725
  • Yu, A., Zhao, J., Wang, Z., Cheng, K., Zhang, P., Tian, G., Liu, X., Guo, E., Du, Y., and Wang, Y. 2020. Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biol. 20: 274. doi:10.1186/s12870-020-02483-4
  • Yue, E., Cao, H., and Liu, B. 2020. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants (Basel) 9: 1337. doi:10.3390/plants9101337
  • Yue, H., Wang, L., Liu, H., Yue, W., Du, X., Song, W., and Nie, X. 2016a. De novo assembly and characterization of the transcriptome of broomcorn millet (Panicum miliaceum L.) for gene discovery and marker development. Front. Plant Sci. 7: 1083. doi:10.3389/fpls.2016.01083
  • Yue, H., Wang, M., Liu, S., Du, X., Song, W., and Nie, X. 2016b. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genom. 17: 1–11. doi:10.1186/s12864-016-2677-3
  • Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., and Luo, L. 2019a. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breeding 39: 1–10. doi:10.1007/s11032-019-0954-y
  • Zhang, D-f., Zeng, T-r., Liu, X-y., Gao, C-x., Li, Y-x., Li, C-h., Song, Y-c., Shi, Y-s., Wang, T-y., and Li, Y. 2019b. Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. J. Int. Agric. 18: 1980–1995. doi:10.1016/S2095-3119(18)62119-7
  • Zhang, F., Lu, F., Wang, Y., Zhang, Z., Wang, J., Zhang, K., Wu, H., Zou, J., Duan, Y., Ke, F., and Zhu, K. 2022. Combined transcriptomic and physiological metabolomic analyses elucidate key biological pathways in the response of two sorghum genotypes to salinity stress. Front. Plant Sci. 13: 880373. doi:10.3389/fpls.2022.880373
  • Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., Yue, Z., Wang, W., Tao, Y., Bian, C., Han, C., Xia, Q., Peng, X., Cao, R., Yang, X., Zhan, D., Hu, J., Zhang, Y., Li, H., Li, H., Li, N., Wang, J., Wang, C., Wang, R., Guo, T., Cai, Y., Liu, C., Xiang, H., Shi, Q., Huang, P., Chen, Q., Li, Y., Wang, J., Zhao, Z., and Wang, J. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30: 549–554. doi:10.1038/nbt.2195
  • Zhang, J., Jiang, F., Shen, Y., Zhan, Q., Bai, B., Chen, W., and Chi, Y. 2019c. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19: 306. doi:10.1186/s12870-019-1914-8
  • Zhang, Y., Gao, X., Li, J., Gong, X., Yang, P., Gao, J., Wang, P., and Feng, B. 2019d. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biol. 19: 397. doi:10.1186/s12870-019-2001-x
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., and Wang, P. 2021. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22: 4609. doi:10.3390/ijms22094609
  • Zhou, G., Shabbir, R., Sun, Z., Chang, Y., Liu, X., and Chen, P. 2024. Transcriptomic analysis reveals candidate genes in response to Sorghum Mosaic Virus and salicylic acid in sugarcane. Plants 13: 234. doi:10.3390/plants13020234
  • Zhou, Y., Yang, P., Cui, F., Zhang, F., Luo, X., and Xie, J. 2016. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLos One. 11: e0146242. doi:10.1371/journal.pone.0146242
  • Zoclanclounon, Y. A. B., Kanfany, G., Kane, A., Fonceka, D., Ehemba, G. L., and Ly, F. 2019. Current status of pearl millet downy mildew prevalence across agroecological zones of Senegal. Sci. World J. 1252653: 1–8. doi:10.1155/2019/1252653-
  • Zou, C., Li, L., Miki, D., Li, D., Tang, Q., Xiao, L., Rajput, S., Deng, P., Peng, L., Jia, W., Huang, R., Zhang, M., Sun, Y., Hu, J., Fu, X., Schnable, P. S., Chang, Y., Li, F., Zhang, H., Feng, B., Zhu, X., Liu, R., Schnable, J. C., Zhu, J.-K., and Zhang, H. 2019. The genome of broomcorn millet. Nat. Commun. 10: 436. doi:10.1038/s41467-019-08409-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.