123
Views
22
CrossRef citations to date
0
Altmetric
RADIATION ONCOLOGY

Advances in Radioimmunotherapy in the Age of Molecular Engineering and Pretargeting

, Ph.D. & , Sc.D., M.D.
Pages 82-97 | Published online: 11 Jun 2009

REFERENCES

  • Pressman D., Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 1953; 6(3)619–623, [CSA]
  • Sharkey R. M., Burton J., Goldenberg D. M. Radioimmunotherapy of non-Hodgkin's lymphoma: an update. Exp. Rev. Clin. Immunol. 2005; 7(1)47–62, [CSA], [CROSSREF]
  • Witzig T. E., Gordon L. I., Cabanillas F., Czuczman M. S., Emmanouilides C., Joyce R., Pohlman B. L., Bartlett N. L., Wiseman G. A., Padre N., Grillo-Lopez A. J., Multani P., White C. A. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 2002; 20(10)2453–2463, [CSA], [CROSSREF]
  • Davis T. A., Kaminski M. S., Leonard J. P., Hsu F. J., Wilkinson M., Zelenetz A., Wahl R. L., Kroll S., Coleman M., Goris M., Levy R., Knox S. J. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin. Cancer Res. 2004; 10(23)7792–7798, [CSA], [CROSSREF]
  • Griffiths G. L., Goldenberg D. M., Jones A. L., Hansen H. J. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjug Chem. 1992; 3(2)91–99, [CSA], [CROSSREF]
  • Zimmer A. M., Spies S. M. New approaches to radiolabeling monoclonal antibodies. Cancer Treat. Res. 1993; 68: 99–109, [CSA]
  • Anderson C. J., Welch M. J. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem. Rev. 1999; 99(9)2219–2234, [CSA], [CROSSREF]
  • Govindan S. V., Griffiths G. L., Stein R., Andrews P., Sharkey R. M., Hansen H. J., Horak I. D., Goldenberg D. M. Clinical-scale radiolabeling of a humanized anticarcinoembryonic antigen monoclonal antibody, hMN-14, with residualizing 131I for use in radioimmunotherapy. J. Nucl Med. 2005; 46(1)153–159, [CSA]
  • Motta-Hennessy C., Sharkey R. M., Goldenberg D. M. Metabolism of indium-111-labeled murine monoclonal antibody in tumor and normal tissue of the athymic mouse. J. Nucl. Med. 1990; 37(9)1510–1519, [CSA]
  • Rogers B. E., Franano F. N., Duncan J. R., Edwards W. B., Anderson C. J., Connett J. M., Welch M. J. Identification of metabolites of 111In-diethylenetriaminepentaacetic acid-monoclonal antibodies and antibody fragments in vivo. Cancer Res. 1995; 55(23 Suppl)5714s–5720s, [CSA]
  • Colcher D., Pavlinkova G., Beresford G., Booth B. J., Choudhury A., Batra S. K. Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. J. Nucl. Med. 1998; 42(4)225–241, [CSA]
  • Sharkey R. M., Blumenthal R. D., Hansen H. J., Goldenberg D. M. Biological considerations for radioimmunotherapy. Cancer Res. 1990; 50(3 Suppl)964s–969s, [CSA]
  • Goldenberg D. M., Blumenthal R. D., Sharkey R. M. Biological and clinical perspectives of cancer imaging and therapy with radiolabeled antibodies. Semin. Cancer Biol. 1990; 1(3)217–225, [CSA]
  • Buchegger F., Pelegrin A., Delaloye B., Bischof-Delaloye A., Mach J. P. Iodine-131-labeled MAb F(ab′)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J. Nucl Med. 1990; 31(6)1035–1044, [CSA]
  • Pedley R. B., Boden J. A., Boden R., Dale R., Begent R. H. Comparative radioimmunotherapy using intact or F(ab′)2 fragments of 131I anti-CEA antibody in a colonic xenograft model. Br. J Cancer. 1993; 68(1)69–73, [CSA]
  • Lane D. M., Eagle K. F., Begent R. H., Hope-Stone L. D., Green A. J., Casey J. L., Keep P. A., Kelly A. M., Ledermann J. A., Glaser M. G. Radioimmunotherapy of metastatic colorectal tumours with iodine-131 -labelled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab′)2 antibodies. Br. J Cancer. 1994; 70(3)521–525, [CSA]
  • Behr T. M., Blumenthal R. D., Memtsoudis S., Sharkey R. M., Gratz S., Becker W., Goldenberg D. M. Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin. Cancer Res. 2000; 6(12)4900–4907, [CSA]
  • Behr T. M., Memtsoudis S., Sharkey R. M., Blumenthal R. D., Dunn R. M., Gratz S., Wieland E., Nebendahl K., Schmidberger H., Goldenberg D. M., Becker W. Experimental studies on the role of antibody fragments in cancer radio-immunotherapy: Influence of radiation dose and dose rate on toxicity and anti-tumor efficacy. Int. J. Cancer. 1998; 77(5)787–795, [CSA], [CROSSREF]
  • Sharkey R. M., Motta-Hennessy C., Pawlyk D., Siegel J. A., Goldenberg D. M. Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res. 1990; 50(8)2330–2336, [CSA]
  • Schott M. E., Schlom J., Siler K., Milenic D. E., Eggensperger D., Colcher D., Cheng R., Kruper W. J., Jr., Fordyce W., Goeckeler W. Biodistribution and preclinical radioimmunotherapy studies using radiolanthanide-labeled immunoconjugates. Cancer. 1994; 73(3 Suppl)993–998, [CSA]
  • Green A., Flynn A., Pedley R. B., Dearling J., Begent R. Nonuniform absorbed dose distribution in the kidney: the influence of organ architecture. Cancer Biother. Radiopharm. 2004; 19(3)371–377, [CSA], [CROSSREF]
  • Sgouros G., Squeri S., Ballangrud A. M., Kolbert K. S., Teitcher J. B., Panageas K. S., Finn R. D., Divgi C. R., Larson S M., Zelenetz A D. Patient-specific, 3-dimensional dosimetry in non-Hodgkin's lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumor dose-response. J. Nucl. Med. 2003; 44(2)260–268, [CSA]
  • Koral K. F., Francis I. R., Kroll S., Zasadny K. R., Kaminski M. S., Wahl R. L. Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received iodine-131 tositumomab therapy Conjugate views compared with a hybrid method. Cancer. 2002; 94(4 Suppl)1258–1263, [CSA], [CROSSREF]
  • Sharkey R. M., Brenner A., Burton J., Hajjar G., Toder S. P., Alavi A., Matthies A., Tsai D. E., Schuster S. J., Stadtmauer E. A., Czuczman M. S., Lamonica D., Kraeber-Bodere F., Mahe B., Chatal J. F., Rogatko A., Mardirrosian G., Goldenberg D. M. Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response?. J. Nucl. Med. 2003; 44(12)2000–2018, [CSA]
  • Behr T. M., Goldenberg D. M., Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur. J. Nucl. Med. 1998; 25(2)201–212, [CSA], [CROSSREF]
  • Blumenthal R. D., Fand I., Sharkey R. M., Boerman O. C., Kashi R., Goldenberg D. M. The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies: an autoradiographic study. Cancer Immunol. Immunother. 1991; 33(6)351–358, [CSA], [CROSSREF]
  • Fand I., Sharkey R. M., Grundy J. P., Goldenberg D. M. Localization by whole-body autoradiography of intact and fragmented radiolabeled antibodies in a metastatic human colonic cancer model. Int. J. Rad. Appl. Instrum. B. 1992; 19(1)87–99, [CSA]
  • Blumenthal R. D., Sharkey R. M., Haywood L., Natale A. M., Wong G. Y., Siegel J. A., Kennel S. J., Goldenberg D. M. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res. 1992; 52(21)6036–6044, [CSA]
  • Behr T. M., Liersch T., Greiner-Bechert L., Griesinger F., Behe M., Markus P. M., Gratz S., Angerstein C., Brittinger G., Becker H., Goldenberg D. M., Becker W. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer 2002; 94(4 Suppl)1373–1381, [CSA], [CROSSREF]
  • Liersch T., Meller J., Kulle B., Behr T. M., Markus P., Langer C., Ghadimi B. M., Wegener W. A., Kovacs J., Horak I. D., Becker H., Goldenberg D M. Phase-II trial of CEA radioimmunotherapy with 131I-labetuzumab post salvage resection of colorectal metastases in the liver: Five-year safety and efficacy results. J. Clin. Oncol. 2005; 23(27)6763–6770, [CSA], [CROSSREF]
  • Sharkey R. M., Goldenberg D. M. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J. Nucl. Med. 2005; 46(Suppl 1)115S–127S, [CSA]
  • Sharkey R. M., Blumenthal R. D., Goldenberg D. M. Anti-antibody enhancement of tumor imaging. Cancer Treat. Res. 1990; 51: 433–455, [CSA]
  • DeNardo G. L., Maddock S. W., Sgouros G., Scheibe P. O., DeNardo S. J. Immunoadsorption: an enhancement strategy for radioimmunotherapy. J. Nucl. Med. 1993; 34(6)1020–1027, [CSA]
  • Wang Z., Garkavij M., Tennvall J. G., Ohlsson T., Strand S. E., Sjogren H. O. Application of extracorporeal immunoadsorption to reduce circulating blood radioactivity after intraperitoneal administration of indium-111-HMFGl-biotin. Cancer. 2002; 94(4 Suppl)1287–1292, [CSA], [CROSSREF]
  • Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256(5517)495–497, [CSA], [CROSSREF]
  • Kuus-Reichel K., Grauer L. S., Karavodin L. M., Knott C., Krusemeier M., Kay N. E. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin. Diagn. Lab. Immunol. 1994; 1(4)365–372, [CSA]
  • Siegel J. A., Pawlyk D. A., Lee R. E., Sasso N. L., Horowitz J. A., Sharkey R. M., Goldenberg D. M. Tumor, red marrow, and organ dosimetry for 131I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res 1990; 50(3 Suppl)1039s–1042s, [CSA]
  • Khazaeli M. B., Conry R. M., LoBuglio A. F. Human immune response to monoclonal antibodies. J. Immunother. 1994; 15(1)42–52, [CSA]
  • Qu Z., Griffiths G. L., Wegener W. A., Chang C. H., Govindan S. V., Horak I. D., Hansen H. J., Goldenberg D. M. Development of humanized antibodies as cancer therapeutics. Methods. 2005; 36(1)84–95, [CSA], [CROSSREF]
  • Kashmiri S. V., De Pascalis R., Gonzales N. R., Schlom J. SDR grafting-a new approach to antibody humanization. Methods. 2005; 36(1)25–34, [CSA], [CROSSREF]
  • Green L. L Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods. 1999; 231(1–2)11–23, [CSA], [CROSSREF]
  • Mueller B M, Reisfeld R A, Gillies S D. Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc. Natl. Acad. Sci. USA. Aug, 1990; 87(15)5702–5, [CSA]
  • Slavin-Chiorini D. C., Koran Hand P., Kashmiri S. V., Calvo B., Zaremba S., Schlom J. Biologic properties of a CH2 domain-deleted recombinant immunoglobulin. Int. J. Cancer. 1993; 53(1)97–103, [CSA]
  • Slavin-Chiorini D. C., Kashmiri S. V., Schlom J., Calvo B., Shu L. M., Schott M. E., Milenic D. E., Snoy P., Carrasquillo J., Anderson K., Horan Hand P. Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. 1995; 55(23 Suppl)5957s–5967s, [CSA]
  • Milenic D., Garmestani K., Dadachova E., Chappell L., Albert P., Hill D., Schlom J., Brechbiel M. Radioimmunotherapy of human colon carcinoma xenografts using a 213Bi-labeled domain-deleted humanized monoclonal antibody. Cancer Biother. Radiopharm 2004; 19(2)135–147, [CSA], [CROSSREF]
  • Foreno A., Meredith R. F., Khazaeli M. B., Carpenter D. M., Shen S., Thornton J., Schlom J., LoBuglio A. F. A novel monoclonal antibody design for radioimmunotherapy. Cancer Biother. Radiopharm. 2003; 18(5)751–759, [CSA], [CROSSREF]
  • Leung S O, Qu Z, Hansen H J, Shih L B, Wang J, Losman M J, Goldenberg D M, Sharkey R M. The effects of domain deletion, glycosylation, and long IgG3 hinge on the biodistribution and serum stability properties of a humanized IgG1 immunoglobulin, hLL2, and its fragments. Clin. Cancer Res. 1999; 5(10Suppl)3106s–3117s, [CSA]
  • Pluckthun A. Antibody engineering: advances from the use of Escherichia coli expression systems. Biotechnology (NY). 1991; 9(6)545–551, [CSA], [CROSSREF]
  • Chester K., Pedley B., Tolner B., Violet J., Mayer A., Sharma S., Boxer G., Green A., Nagl S., Begent R. Engineering antibodies for clinical applications in cancer. Tumour Biol. 2004; 25(1–2)91–98, [CSA], [CROSSREF]
  • Russeva M. G., Adams G. P. Radioimmunotherapy with engineered antibodies. Expert. Opin. Biol. Ther. 2004; 4(2)217–231, [CSA], [CROSSREF]
  • Presta L. Antibody engineering for therapeutics. Curr. Opin. Struct. Biol. 2003; 13(4)519–425, [CSA]
  • Wu A. M., Yazaki P. J. Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 2000; 44(3)268–283, [CSA]
  • Kortt A. A., Dolezal O., Power B. E., Hudson P. J. Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol. Eng. 2001; 18(3)95–108, [CSA], [CROSSREF]
  • Souriau C., Hudson P. J. Recombinant antibodies for cancer diagnosis and therapy. Expert. Opin. Biol. Ther. 2003; 3(2)305–318, [CSA], [CROSSREF]
  • Hu S., Shively L., Raubitschek A., Sherman M., Williams L. E., Wong J. Y., Shively J. E., Wu A. M. Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996; 56(13)3055–3061, [CSA]
  • Kenanova V., Olafsen T., Crow D. M., Sundaresan G., Subbarayan M., Carter N. H., Ikle D. N., Yazaki P. J., Chatziioannou A. F., Gambhir S. S., Williams L. E., Shively J. E., Colcher D., Raubitschek A. A., Wu A. M. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 2005; 65(2)622–631, [CSA]
  • Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., Bendahman N., Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993; 363(6428)446–448, [CSA], [CROSSREF]
  • Cortez-Retamozo V., Backmann N., Senter P. D., Wernery U., De Baetselier P., Muyldermans S., Revets H. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004; 64(8)2853–2857, [CSA], [CROSSREF]
  • Nuttall S. D., Krishnan U. V., Hattarki M., De Gori R., Irving R. A., Hudson P. J. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 2001; 38(4)313–326, [CSA], [CROSSREF]
  • Yazaki P. J., Wu A. M., Tsai S. W., Williams L. E., Ikler D. N., Wong J. Y., Shively J. E., Raubitschek A. A. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem. 2001; 12(2)220–228, [CSA], [CROSSREF]
  • Goel A., Colcher D., Baranowska-Kortylewicz J., Augustine S., Booth B. J., Pavlinkova G., Batra S. K. Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res. 2000; 60(24)6964–6911, [CSA]
  • Goel A., Baranowska-Kortylewicz J., Hinrichs S. H., Wisecarver J., Pavlinkova G., Augustine S., Colcher D., Booth B. J., Batra S. K. 99mTc-labeled divalent and tetravalent CC49 single-chain Fv's: novel imaging agents for rapid in vivo localization of human colon carcinoma. J. Nucl Med. 2001; 42(10)1519–1527, [CSA]
  • Chauhan S. C., Jain M., Moore E. D., Wittel U. A., Li J., Gwilt P. R., Colcher D., Batra S. K. Pharmacokinetics and biodistribution of 177Lu-labeled multivalent single-chain Fv construct of the pancarcinoma monoclonal antibody CC49. Eur. J. Nucl. Med. Mol Imaging. 2005; 32(3)264–273, [CSA], [CROSSREF]
  • Chang C. H., Sharkey R. M., Rossi E. A., Karacay H., McBride W., Hansen H. J., Chatal J. F., Barbet J., Goldenberg D. M. Molecular advances in pretargeting radioimmunotherapy with bispecific antibodies. Mol. Cancer Ther. 2002; 1(7)553–563, [CSA]
  • Boerman O. C., van Schaijk F. G., Oyen W. J., Corstens F. H. Pretargeted radioimmunotherapy of cancer: progress step by step. J. Nucl. Med. 2003; 44(3)400–411, [CSA]
  • He J., Liu G., Gupta S., Zhang Y., Rusckowski M., Hnatowich D. J. Amplification targeting: a modified pretargeting approach with potential for signal amplification-proof of a concept. J. Nucl. Med. 2004; 45(6)1087–1095, [CSA]
  • Nakamura K., Fan C., Liu G., Gupta S., He J., Dou S., Kubo A., Rusckowski M., Hnatowich D. J. Evidence of antisense tumor targeting in mice. Bioconjug. Chem. 2004; 15(6)1475–1480, [CSA], [CROSSREF]
  • Reardan D. T., Meares C. F., Goodwin D. A., McTigue M., David G. S., Stone M. R., Leung J. P., Bartholomew R. M., Frincke J. M. Antibodies against metal chelates. Nature. 1985; 316(6025)265–268, [CSA], [CROSSREF]
  • Goodwin D. A., Meares C. F., David G. F., McTigue M., McCall M. J., Frincke J. M., Stone M. R., Bartholomew R. M., Leung J. P. Monoclonal antibodies as reversible equilibrium carriers of radiopharmaceuticals. Int. J. Rad. Appl. Instrum. B. 1986; 13(4)383–391, [CSA]
  • Goodwin D. A., Meares C. F., McCall M. J., McTigue M., Chaovapong W. Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J. Nucl. Med. 1988; 29(2)226–234, [CSA]
  • Primus F. J., Macdonald R., Goldenberg D. M., Hansen H. J. Localization of GW-39 human tumors in hamsters by affinity-purified antibody to carcinoembryonic antigen. Cancer Res. 1977; 37(5)1544–1547, [CSA]
  • Stickney D. R., Anderson L. D., Slater J. B., Ahlem C. N., Kirk G. A., Schweighardt S. A., Frincke J. M. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991; 51(24)6650–6655, [CSA]
  • Halpern S. E., Haindl W., Beauregard J., Hagan P., Clutter M., Amox D., Merchant B., Unger M., Mongovi C., Bartholomew R. Scintigraphy with In-111-labeled monoclonal antitumor antibodies: kinetics, biodistribution, and tumor detection. Radiology. 1988; 168(2)529–536, [CSA]
  • Divgi C R., McDermott K., Griffin T. W., Johnson D. K., Schnobrich K. E., Fallone P. S., Scott A. M., Hilton S., Cohen A. M., Larson S. M. Lesion-by-lesion comparison of computerized tomography and indium-111-labeled monoclonal antibody C1 10 radioimmunoscintigraphy in colorectal carcinoma: a multicenter trial. J Nucl Med. 1993; 34(10)1656–1661, [CSA]
  • Podoloff D. A., Part Y. Z., Curley S. A., Kim E. E., Bhadkamkar V. A., Smith R. E. Imaging of colorectal carcinoma with technetium-99m radiolabeled Fab′ fragments. Semin. Nucl. Med. 1993; 23(2)89–98, [CSA]
  • Goldenberg D. M. Perspectives on oncologic imaging with radiolabeled antibodies. Cancer. 1997; 80(12 Suppl)2431–2435, [CSA], [CROSSREF]
  • Le Doussal J. M., Martin M., Gautherot E., Delaage M., Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J. Nucl. Med. 1989; 30(8)1358–1366, [CSA]
  • Le Doussal J. M., Barbet J., Delaage M. Bispecific-antibody-mediated targeting of radiolabeled bivalent haptens: theoretical, experimental and clinical results. Int. J. Cancer Suppl. 1992; 7: 58–62, [CSA]
  • Karacay H., McBride W. J., Griffiths G. L., Sharkey R. M., Barbet J., Hansen H. J., Goldenberg D. M. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti-[In-DTPA] bispecific antibody construct and a 99mTc-/188Re-labeled peptide. Bioconjug Chem. 2000; 11(6)842–854, [CSA], [CROSSREF]
  • Janevik-Ivanovska E., Gautherot E., Hillairet de Boisferon M., Cohen M., Milhaud G., Tartar A., Rostene W., Barbet J., Gruaz-Guyon A. Bivalent hapten-bearing peptides designed for iodine-131 pretargeted radioimmunotherapy. Bioconjug. Chem. 1997; 8(4)526–533, [CSA], [CROSSREF]
  • Morel A., Darmon M., Delaage M. Recognition of imidazole and histamine derivatives by monoclonal antibodies. Mol. Immunol. 1990; 27(10)995–1000, [CSA], [CROSSREF]
  • Sharkey R. M., McBride W. J., Karacay H., Chang K., Griffiths G. L., Hansen H. J., Goldenberg D. M. A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res. 2003; 63(2)354–363, 15[CSA]
  • Rossi E. A., Sharkey R. M., McBride W., Karacay H., Zeng L., Hansen H. J., Goldenberg D. M., Chang C. H. Development of new multivalent-bispecific agents for pretargeting tumor localization and therapy. Clin. Cancer Res. 2003; 9(10 Pt 2)3886S–3896S, [CSA]
  • Rossi E. A., Chang C.-H., Losman M. J., Sharkey R. M., Karacay H., McBride W. J., Cardillo T. M., Hansen H. J., Qu Z., Horak I. D., Goldenberg D. M. Pretargeting of CEA-expressing cancer with a trivalent fusion protein produced in myeloma cells. Clin. Cancer. Res. 2005; 11(Suppl 19)7122S–7129S, Pt. 2[CSA]
  • Sharkey R. M., Cardillo T. M., Rossi E. A., Chang C-H., Karacay K., McBride W. J., Hansen H. J., Horak I. D., Goldenberg D. M. Signal amplification in molecular imaging by pretargeting a multivalent bispecific antibody. Clin Cancer Res. 2005; 11(Suppl 19)7109S–7121S, Pt. 2[CSA]
  • Sharkey R. M., Karacay H., Cardillo T. M., Chang C.-H., McBride W. J., Rossi E. A., Horak I. D., Goldenberg D. M. Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin. Cancer Res. (Suppl.) 2005, (in press)[CSA]
  • Hnatowich D. J., Virzi F., Rusckowski M. Investigations of avidin and biotin for imaging applications. J. Nucl. Med. 1987; 28(8)1294–1302, [CSA]
  • Kalofonos H. P., Rusckowski M., Siebecker D. A., Sivolapenko G. B., Snook D., Lavender J. P., Epenetos A. A., Hnatowich D. J. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J. Nucl. Med. 1990; 31(11)1791–1796, [CSA]
  • Hnatowich D. J. The in vivo uses of streptavidin and biotin: a short progress report. Nucl. Med. Comm. 1994; 15: 575–577, [CSA]
  • Sharkey R. M., Karacay H., Griffiths G. L., Behr T. M., Blumenthal R. D., Mattes M. J., Hansen H. J., Goldenberg D. M. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug. Chem. 1997; 8(4)595–604, [CSA]
  • Paganelli G., Pervez S., Siccardi A. G., Rowlinson G., Deleide G., Chiolerio F., Malcovati M., Scassellati G. A., Epenetos A. A. Intraperitoneal radio-localization of tumors pre-targeted by biotinylated monoclonal antibodies. Int. J. Cancer. 1990; 45(6)1184–1189, [CSA]
  • Pimm M. V., Fells H. F., Perkins A. C., Baldwin R. W. Iodine-131 and indium labeled avidin and streptavidin for pre-targetted immunoscintigraphy with biotinylated anti-tumor monoclonal antibody. Nucl. Med. Commun. 1988; 9: 931–941, [CSA]
  • Yao Z., Zhang M., Sakahara H., Saga T., Arano Y., Konishi J. Avidin targeting of intraperitoneal tumor xenografts. J. Natl. Cancer Inst. 1998; 90: 25–29, [CSA], [CROSSREF]
  • Rosebrough S. F., Hartley D. F. Biochemical modification of streptavidin and avidin: in vitro and in vivo analysis. J. Nucl. Med. 1996; 37(8)1380–1384, [CSA]
  • Wilbur D. S., Hamlin D. K., Buhler K. R., Pathare P. M., Vessella R. L., Stayton P. S., To R. Streptavidin in antibody pretargeting. 2. Evaluation Of methods for decreasing localization of streptavidin to kidney while retaining its tumor binding capacity. Bioconjug Chem. 1998; 9(3)322–330, [CSA], [CROSSREF]
  • Yao Z., Zhang M., Sakahara H., Nakamoto Y., Higashi T., Zhao S., Sato N., Arano Y., Konishi J. The relationship of glycosylation and isoelectric point with tumor accumulation of avidin. J. Nucl. Med. 1999; 40(3)479–483, [CSA]
  • Le Doussal J. M., Chetanneau A., Gruaz-Guyon A., Martin M., Gautherot E., Lehur P. A., Chatal J. F., Delaage M., Barbet J. Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTP A dimer to primary colorectal tumors: pharmacokinetics, biodistribution, scintigraphy and immune response. J. Nucl. Med. 1993; 34(10)1662–1671, [CSA]
  • Axworthy D. B., Fritzberg A. R., Hylarides M. D., Mallett R. W., Theodore L. J., Gustavson L. M., Su F-M., Beaumier P. L., Reno J. M. Preclinical evaluation of an anti-tumor monoclonal antibody/streptavidin conjugate for pretargeted 90Y radioimmunotherapy in a mouse xenograft model [abstract]. J. Immunother. 1994; 16: 158, [CSA]
  • Axworthy D. B., Reno J. M., Hylarides M. D., Mallett R. W., Theodore L. J., Gustavson L. M., Su F., Hobson L. J., Beaumier P. L., Fritzberg A. R. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc. Natl. Acad. Sci. USA. 2000; 97(4)1802–1807, [CSA], [CROSSREF]
  • Gautherot E., Rouvier E., Daniel L., Loucif E., Bouhou J., Manetti C., Martin M., Le Doussal J. M., Barbet J. Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131I-labeled bivalent hapten. J. Nucl Med. 2000; 41(3)480–487, [CSA]
  • Boerman O. C., Kranenborg M. H., Oosterwijk E., Griffiths G. L., McBride W. J., Oyen W. J., de Weijert M., Oosterwijk-Wakka J., Hansen H. J., Corstens F. H. Pretargeting of renal cell carcinoma: improved tumor targeting with a bivalent chelate. Cancer Res. 1999; 59(11)4400–4405, [CSA]
  • Chiou R. K., Vessella R. L., Elson M. K., dayman R. V., Gonzalez-Campoy J. M., Klicka M. J., Shafer R. B., Lange P. M. Localization of human renal cell carcinoma xenografts with a tumor-preferential monoclonal antibody. Cancer Res. 1985; 45(12 Pt 1)6140–6146, [CSA]
  • Sands H., Jones P. L., Shah S. A., Palme D., Vessella R. L., Gallagher B. M. Correlation of vascular permeability and blood flow with monoclonal antibody uptake by human Clouser and renal cell xenografts. Cancer Res. 1988; 48(1)188–193, [CSA]
  • van Schaijk F. G., Oosterwijk E., Molkenboer-Kuenen J. D., Soede A. C., McBride B. J., Goldenberg D. M., Oyen W. J., Corstens F. H., Boerman O. C. Pretargeting with bispecific anti-renal cell carcinoma x anti-DTPA(In) antibody in 3 RCC models. J. Nucl. Med. 2005; 46(3)495–501, [CSA]
  • Sharkey R. M. The direct route may not be the best way to home. J. Nucl. Med. 2005; 46(3)391–394, [CSA]
  • Mattes M. J. Biodistribution of antibodies after intraperitoneal or intravenous injection and effect of carbohydrate modifications. J. Natl. Cancer Inst. 1987; 79(4)855–863, [CSA]
  • Schultz J., Lin Y., Sanderson J., Zuo Y., Stone D., Mallett R., Wilbert S., Axworthy D. A tetravalent single-chain antibody-streptavidin fusion protein for pretargeted lymphoma therapy. Cancer Res. 2000; 60(23)6663–6669, [CSA]
  • Lewis M. R., Zhang J., Jia F., Owen N. K., Cutler C. S., Embree M. F., Schultz J., Theodore L. J., Ketring A. R., Jurisson S. S., Axworthy D. B. Biological comparison of 149Pm-, 166Ho-, and 177Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft-bearing nude mice. Nucl. Med Biol. 2004; 31(2)213–223, [CSA], [CROSSREF]
  • Goshorn S., Sanderson J., Axworthy D., Lin Y., Hylarides M., Schultz J. Preclinical evaluation of a humanized NR-LU-10 antibody-streptavidin fusion protein for pretargeted cancer therapy. Cancer Biother. Radiopharm. 2001; 16(2)109–123, [CSA], [CROSSREF]
  • Forero A., Weiden P. L., Vose J. M., Knox S. J., LoBuglio A. F., Hankins J., Goris M. L., Picozzi V. J., Axworthy D. B., Breitz H. B., Sims R. B., Ghalie R. G., Shen S., Meredith R. F. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood. 2004; 104(1)227–236, [CSA], [CROSSREF]
  • Shen S., Forero A., Lobuglio A. F., Breitz H., Khazaeli M. B., Fisher D. R., Wang W., Meredith R. F. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J. Nucl. Med. 2005; 46(4)642–651, [CSA]
  • Paganelli G., Magnani P., Zito F., Villa E., Sudati F., Lopalco L., Rossetti C., Malcovati M., Chiolerio F., Seccamani E. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991; 51(21)5960–5966, [CSA]
  • Paganelli G., Grana C., Chinol M., Cremonesi M., De Cicco C., De Braud F., Robertson C., Zurrida S., Casadio C., Zoboli S., Siccardi A. G., Veronesi U. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur. J. Nucl. Med. 1999; 26(4)348–357, [CSA], [CROSSREF]
  • Mirallie E., Sai-Maurel C., Faivre-Chauvet A., Regenet N., Chang C.-H., Goldenberg D. M., Chatal J. F., Barbet J., Thedrez P. Improved pretargeted delivery of radiolabelled hapten to human tumour xenograft in mice by avidin chase of circulating bispecific antibody. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32(8)901–909, [CSA], [CROSSREF]
  • Sharkey R. M., Karacay H., Richel H., McBride W. J., Rossi E. A., Chang K., Yeldell D., Griffiths G. L., Hansen H. J., Goldenberg D. M. Optimizing bispecific antibody pretargeting for use in radioimmunotherapy. Clin. Cancer Res. 2003; 9(10)3897S–3913S, Pt 2[CSA]
  • van Schaijk F. G., Boerman O. C., Soede A. C., McBride W. J., Goldenberg D. M., Corstens F. H.M., Oosterwijk E. Comparison of IgG and F(ab′)2-fragments of bispecific anti-RCC x anti-DTIn-1 antibody for pretargeting purposes. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32(9)1089–1095, [CSA], [CROSSREF]
  • Adams G. P., Schier R., McCall A. M., Simmons H. H., Horak E. M., Alpaugh R. K., Marks J. D., Weiner L. M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001; 61(12)4750–4755, [CSA]
  • Fujimori K., Covell D. G., Fletcher J. E., Weinstein J. N. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J. Nucl. Med. 1990; 31(7)1191–1198, [CSA]
  • van Osdol; W W., Sung C., Dedrick R. L., Weinstein J. N. A distributed pharmacokinetic model of two-step imaging and treatment protocols: application to streptavidin-conjugated monoclonal antibodies and radiolabeled biotin. J. Nucl. Med. 1993; 34(9)1552–1564, [CSA]
  • Sung C., van Osdol W. W., Saga T., Neumann R. D., Dedrick R. L., Weinstein J. N. Streptavidin distribution in metastatic tumors pretargeted with a biotinylated monoclonal antibody: theoretical and experimental pharmacokinetics. Cancer Res. 1994; 54(8)2166–2175, [CSA]
  • Breitz H. B., Weiden P. L., Beaumier P. L., Axworthy D. B., Seiler C., Su P. M., Graves S., Bryan K., Reno J. M. Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J. Nucl. Med. 2000; 41(1)131–140, [CSA]
  • Kraeber-Bodere P., Faivre-Chauvet A., Ferrer L., Vuillez J. P., Brard P. Y., Rousseau C., Resche I., Devillers A., Laffont S., Bardies M., Chang K., Sharkey R. M., Goldenberg D. M., Chatal J. F., Barbet J. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin. Cancer Res. 2003; 9(10)3973S–3981S, Pt 2[CSA]
  • Press O. W., Corcoran M., Subbiah K., Hamlin D. K., Wilbur D. S., Johnson T., Theodore L., Yau E., Mallett R., Meyer D. L., Axworthy D. A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood. 2001; 98(8)2535–2543, [CSA], [CROSSREF]
  • Subbiah K., Hamlin D. K., Pagel J. M., Wilbur D. S., Meyer D. L., Axworthy D. B., Mallett R. W., Theodore L. J., Stayton P. S., Press O. W. Comparison of immunoscintigraphy, efficacy, and toxicity of conventional and pretargeted radioimmunotherapy in CD20-expressing human lymphoma xenografts. J. Nucl. Med. 2003; 44(3)437–445, [CSA]
  • Pagel J. M., Hedin N., Subbiah K., Meyer D., Mallet R., Axworthy D., Theodore L. J., Wilbur D. S., Matthews B. C., Press O. W. Comparison of anti-CD20 and anti-CD45 antibodies for conventional and pretargeted radioimmunotherapy of B-cell lymphomas. Blood. 2003; 101(6)2340–2348, [CSA], [CROSSREF]
  • Zhang M, Zhang Z., Garmestani K., Schultz J., Axworthy D. B., Goldman C. K., Brechbiel M. W., Carrasquillo J. A., Waldmann T. A. Pretarget radiotherapy with an anti-CD25 antibody-streptavidin fusion protein was effective in therapy of leukemia/lymphoma xenografts. Proc. Natl. Acad. Sci. USA. 2003; 100(4)1891–1895, [CSA], [CROSSREF]
  • Zhang M., Yao Z., Garmestani K., Axworthy D. B., Zhang Z., Mallett R. W., Theodore L. J., Goldman C. K., Brechbiel M. W., Carrasquillo J. A., Waldmann T. A. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood. 2002; 100(1)208–216, [CSA], [CROSSREF]
  • Sharkey R. M., Karacay H., Chang C. H., McBride W. J., Horak I. D., Goldenberg D. M. Improved therapy of non-Hodgkin's lymphoma xenografts using radionuclides pretargeted with a new anti-CD20 bispecific antibody. Leukemia. 2005; 19(6)1064–1069, [CSA], [CROSSREF]
  • Cheung N. K., Modak S., Lin Y., Quo H., Zanzonico P., Chung J., Zuo Y., Sanderson J., Wilbert S., Theodore L. J., Axworthy D. B., Larson S. M. Single-chain Fv-streptavidin substantially improved therapeutic index in multistep targeting directed at disialoganglioside GD2. J. Nucl. Med. 2004; 45(5)867–877, [CSA]
  • Yao Z., Zhang M., Axworthy D. B., Wong K. J., Garmestani K., Park L., Park C. W., Mallett R. W., Theodore L. J., Yau E. K., Waldmann T. A., Brechbiel M. W., Paik C. H., Pastan I., Carrasquillo J. A. Radioimmunotherapy of A431 xenografted mice with pretargeted B3 antibody-streptavidin and 90Y-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N”′-tetraacetic acid (DOTA)-biotin. Cancer Res. 2002; 62(20)5755–5760, [CSA]
  • Kraeber-Bodere F., Sai-Maurel C., Campion L., Faivre-Chauvet A., Mirallie E., Cherel M., Supiot S., Barbet J., Chatal J. F., Thedrez P. Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol. Cancer Ther. 2002; 1(4)267–274, [CSA]
  • Graves S. S., Dearstyne E., Lin Y., Zuo Y., Sanderson J., Schultz J., Pantalias A., Gray D., Axworthy D., Jones H. M., Auditore-Hargreaves K. Combination therapy with pretarget CC49 radioimmunotherapy and gemcitabine prolongs tumor doubling time in a murine xenograft model of colon cancer more effectively than either monotherapy. Clin. Cancer Res. Sep., 2003; 9(10)3712–3721, 1Pt 1[CSA]
  • Knox S. J., Goris M. L., Tempero M., Weiden P. L., Centner L., Breitz H., Adams G. P., Axworthy D., Gaffigan S., Bryan K., Fisher D. R., Colcher D., Horak I. D., Weiner L. M. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin. Cancer Res. 2000; 6(2)406–414, [CSA]
  • Breitz H. B., Fisher D. R., Goris M. L., Knox S., Ratliff B., Murtha A. D., Weiden P. L. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm. 1999; 14(5)381–395, [CSA]
  • Vuillez J. P., Kraeber-Bodere F., Moro D., Bardies M., Douillard J. Y., Gautherot E., Rouvier E., Barbet J., Garban F., Moreau P., Chatal J. F. Radioimmunotherapy of small cell lung carcinoma with the two-step method using a bispecific anti-carcinoembryonic antigen/anti-diethylenetriaminepentaacetic acid (DTPA) antibody and iodine-131 di-DTPA hapten: results of a phase I/II trial. Clin. Cancer Res. 1999; 5(10 Suppl)3259s–3267s, [CSA]
  • Kraeber-Bodere F., Bardet S., Hoefnagel C. A., Vieira M. R., Vuillez J. P., Murat A., Ferreira T. C., Bardies M., Ferrer L., Resche I., Gautherot E., Rouvier E., Barbet J., Chatal J. F. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131I-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin. Cancer Res. 1999; 5(10 Suppl)3190s–3198s, [CSA]
  • Grana C., Chinol M., Robertson C., Mazzetta C., Bartolomei M., De Cicco C., Fiorenza M., Gatti M., Caliceti P., Paganelli G. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br. J. Cancer. 2002; 86(2)207–212, [CSA], [CROSSREF]
  • Kraeber-Bodere F., Faivre-Chauvet A., Sai-Maurel C., Campion L., Fiche M., Gautherot E., Le Boterff J., Barbet J., Chatal J. F., Thedrez P. Toxicity and efficacy of radioimmunotherapy in carcinoembryonic antigen-producing medullary thyroid cancer xenograft: comparison of iodine 131I-labeled F(ab′)2 and pretargeted bivalent hapten and evaluation of repeated injections. Clin. Cancer Res. 1999; 5(10 Suppl)3183s–3189s, [CSA]
  • Tempero M., Leichner P., Baranowska-Kortylewicz J., Harrison K., Augustine S., Schlom J., Anderson J., Wisecarver J., Colcher D. High-dose therapy with 90Yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res. 2000; 6(8)3095–3102, [CSA]
  • Valkema R., Pauwels S. A., Kvols L. K., Kwekkeboom D. J., Jamar F., de Jong M., Barone R., Walrand S., Kooij P. P., Bakker W. H., Lasher J., Krenning E. P. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0,Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. Nucl. Med. 2005; 46(Suppl 1)83S–891S, [CSA]
  • Mirallie E., Vuillez J. P., Bardet S., Frampas E., Dupas B., Ferrer L., Faivre-Chauvet A., Murat A., Charbonnel B., Barbet J., Goldenberg D. M., Chatal J F., Kraeber-Bodere F. High frequency of bone/bone marrow involvement in advanced medullary thyroid cancer. J. Clin. Endocrinol Metab. 2005; 90(2)779–788, [CSA], [CROSSREF]
  • Sharkey R. M., Juweid M., Shevitz J., Behr T., Dunn R., Swayne L. C., Wong G. Y., Blumenthal R. D., Griffiths G. L., Siegel J. A., Leung S.-O., Hansen H. J., Goldenberg D. M. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 1995; 55(23 Suppl)5935s–5945s, [CSA]
  • Grana C., Chinol M., Magnani P., Corti A., Sidoli A., Siccardi A. G., Paganelli G. In vivo tumor targeting based on the avidin-biotin system. Tumor Targeting. 1996; 2: 230–239, [CSA]
  • Weiden P. L., Breitz H. B. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL). Crit. Rev. Oncol. Hematol. 2001; 40(1)37–51, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.