771
Views
92
CrossRef citations to date
0
Altmetric
PEDIATRIC ONCOLOGY

Disialoganglioside Directed Immunotherapy of Neuroblastoma

, M.D. & , M.D., Ph.D.
Pages 67-77 | Published online: 11 Jun 2009

REFERENCES

  • Kramer K., Kushner B., Heller G., Cheung N. K. Neuroblastoma metastatic to the central nervous system. The Memorial Sloan-Kettering Cancer Center Experience and A literature review. Cancer 2001; 91(8)1510–1519
  • Matthay K. K., Villablanca J. G., Seeger R. C. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 1999; 341(16)1165–1173
  • Rousseau R. F., Brenner M. K. Vaccine therapies for pediatric malignancies. Cancer J. 2005; 11(4)331–339
  • Caruso D. A., Orme L. M., Amor G. M. Results of a phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with stage 4 neuroblastoma. Cancer 2005; 103(6)1280–1291
  • Lipinski M., Hirsch M. R., Deagostini-Bazin H., Yamada O., Tursz T., Goridis C. Characterization of neural cell adhesion molecules (NCAM) expressed by Ewing and neuroblastoma cell lines. Int. J. Cancer 1987; 40(1)81–86
  • Grunberg J., Novak-Hofer I., Honer M. In vivo evaluation of 177Lu-and 67/64Cu-labeled recombinant fragments of antibody chCE7 for radioimmunotherapy and PET imaging of L1-CAM-positive tumors. Clin. Cancer Res. 2005; 11(14)5112–5120
  • Modak S., Kramer K., Gultekin S. H., Guo H. F., Cheung N. K. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001; 61(10)4048–4054
  • Smolarz K., Waters W., Sieverts H. Immunoscintigraphy with Tc-99m-labeled monoclonal antibody BW575 compared with I-123 MIBG scintigraphy in neuroblastoma. Radiology 1989; 173: 152–153
  • Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 2001; 491: 369–402
  • Bullens R. W., O'Hanlon G. M., Wagner E. Roles of complex gangliosides at the neuromuscular junction. Ann. NY Acad. Sci. 2003; 998: 401–403
  • Hakomori S., Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem (Tokyo.) 1995; 118(6)1091–1103
  • Helling F., Livingston P. O. Ganglioside conjugate vaccines. Immunotherapy against tumors of neuroectodermal origin. Mol. Chem. Neuropathol. 1994; 21(2–3)299–309
  • Furukawa K., Soejima H., Niikawa N., Shiku H. Genomic organization and chromosomal assignment of the human B1,4-N-acetylgalactosaminyltransferase gene. J. Biol. Chem. 1996; 271: 20836–20844
  • Wu Z., Schwartz E., Seeger R. C., Ladisch S. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 1986; 46: 440–443
  • Kramer K., Gerald W. L., Kushner B. H., Larson S. M., Hameed M., Cheung N. K. Disialoganglioside GD2 loss following monoclonal antibody therapy is rare in neuroblastoma. Medical Pediatric Oncology. 2001; 36: 194–196
  • Schulz G., Cheresh D. A., Varki N. M., Yu A., Staffileno L. K., Reisfeld R. A. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984; 44: 5914–5920
  • Kushner B. H., Cheung I. Y., Kramer K., Modak S., Cheung N. K. High-dose cyclophosphamide inhibition of humoral immune response to murine monoclonal antibody 3F8 in neuroblastoma patients: Broad implications for immunotherapy. Pediatr. Blood Cancer 2006, forthcoming
  • Imai M., Landen C., Ohta R., Cheung N. K., Tomlinson S. Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic Cancer. Cancer Res. 2005; 65(22)10562–10568
  • Lode H. N., Xiang R., Varki N. M., Dolman C. S., Gillies S. D., Reisfeld R. A. Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J. Natl. Cancer Inst. 1997; 89: 1586–1594
  • Kushner B. H., Cheung N. K. GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 1989; 73(7)1936–1941
  • Lo Piccolo M. S., Cheung N. K., Cheung I. Y. GD2 synthase: a new molecular marker for detecting neuroblastoma. Cancer 2001; 92(4)924–931
  • Cheung I. Y., Lo Piccolo M. S., Kushner B. H., Cheung N. K. Early molecular response of marrow disease to biologic therapy is highly prognostic in neuroblastoma. J. Clin. Oncol. 2003; 21(20)3853–3858
  • Cheung I. Y., Sahota A., Cheung N. K. Measuring circulating neuroblastoma cells by quantitative reverse transcriptase-polymerase chain reaction analysis. Cancer 2004; 101(10)2303–2308
  • Cheung N. K., Saarinen U., Neely J., Landmeier B., Donovan D., Coccia P. Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res. 1985; 45: 2642–2649
  • Cheung N. K.V., Walter E. I., Smith-Mensah W. H., Ratnoff W. D., Tykocinski M. L., Medof M. E. Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J. Clin. Invest. 1988; 81: 1122–1128
  • Munn D. H., Cheung N. K. Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity (ADCC) against human melanoma. Cancer Res. 1987; 47: 6600–6605
  • Munn D. H., Cheung N. K. Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor. Induction of efficient antibody-mediated antitumor cytotoxicity not detected by isotope release assays. J. Exp. Med. 1989; 170: 511–526
  • Kushner B. H., Cheung N. K. Absolute requirement of CD11/CD18 adhesion molecules, FcRII and the phosphatidylinositol-linked FcRIII for monoclonal antibody-mediated neutrophil antihuman tumor cytotoxicity. Blood 1992; 79(6)1484–1490
  • Hong F., Yan J., Baran J. T. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004; 173(2)797–806
  • Cheung N., Modak S. Oral (1-3,(1-4)-beta-glucan syngergizes with anti-ganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin. Cancer Res. 2002; 8: 1217–1223
  • Cheung N. K., Modak S., Vickers A., Knuckles B. Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol. Immunother. 2002; 51(10)557–564
  • Cheung N. K., Lazarus H., Miraldi F. D. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J. Clin. Oncol. 1987; 5(9)1430–1440
  • Cheung N. K., Kushner B. H., Yeh S. D., Larson S. M. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int. J. Oncol. 1998; 12(6)1299–1306
  • Kushner B. H., Kramer K., Cheung N. K.V., Phase I I. trial of the anti-G(D2) monoclonal antibody 3F8 and granulocyte-macrophage colony-stimulating factor for neuroblastoma. J. Clin. Oncol. 2001; 19: 4189–4194
  • Stein J., Strandjord S., Saarinen U. M. In vitro treatment of autologous bone marrow from neuroblastoma patients with anti-G{-D2} monoclonal antibody and human complement: a pilot study. Advances in Neuroblastoma Research, A. E. Evans, G. J. D'Angio, A. G. Knudson, R. C. Seeger. Alan Liss, New York 1988; 237–248
  • Brodeur G. M., Pritchard J., Berthold F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 1993; 11(8)1466–1477
  • Cheung N. K., Kushner B. H., Cheung I. Y. Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J. Clin. Oncol. 1998; 16(9)3053–3060
  • Kushner B., Kramer K., Modak S., Cheung N. K. Anti-GD2 monoclonal antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for primary refractory neuroblastoma (NB) in bone marrow. Advances in Neuroblastoma Research: Eleventh Conference. 2006, Abstr. 303
  • Cheung I. Y., Lo Piccolo M. S., Kushner B. H., Kramer K., Cheung N. K. Quantitation of GD2 synthase mRNA by real-time reverse transcriptase polymerase chain reaction: clinical utility in evaluating adjuvant therapy in neuroblastoma. J. Clin. Oncol. 2003; 21(6)1087–1093
  • Beiske K., Ambros P. F., Burchill S. A., Cheung I. Y., Swerts K. Detecting minimal residual disease in neuroblastoma patients-the present state of the art. Cancer Lett. 2005; 228(1–2)229–240
  • Lin Y., Kushner B., Modak S. Pre-Administration of Heat-Modified 3F8 reduces 3F8 Infusion-Associated pain In patients with neuroblastoma. Advances in Neuroblastoma Research: Eleventh Conference. 2006, Abstr. 328
  • Cheung N. K., Cheung I. Y., Canete A. Antibody response to murine anti-GD2 monoclonal antibodies: correlation with patient survival. Cancer Res. 1994; 54(8)2228–2233
  • Modak S., Kushner B., Kramer K., Vickers A., Cheung N. K. Combination of anti-GD2 antibody 3F8 and barley-derived (1→3), 1→4) B-D-glucan: phase i study in patients with resistant neuroblastoma. Advances in Neuroblastoma Research: eleventh conference. 2006, Abstr. 326
  • Rill D. R., Santana V. M., Roberts W. M. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 1994; 84: 380–383
  • Cheung I. Y., Lo Piccolo M. S., Collins N., Kushner B. H., Cheung N. K. Quantitation of GD2 synthase mRNA by real-time reverse transcription-polymerase chain reaction: utility in bone marrow purging of neuroblastoma by anti-GD2 antibody 3F8. Cancer 2002; 94(11)3042–3048
  • van Sorge N. M., van der Pol W. L., van de Winkel J. G., Fcγ R. polymorphisms: implications for function, disease susceptibility and immunotherapy. Tissue Antigens 2003; 61(3)189–202
  • Ravetch J. V., Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001; 19: 275–290
  • Cheung N. K., Sowers R., Vickers A. J., Cheung I. Y., Kushner B. H., Gorlick R. FCGR2A polymorphism is correlated with Clinical outcome after immunotherapy of neuroblastoma with anti-GD2 antibody and granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 2006; 24(18)2885–2890
  • Mujoo K., Kipps T. J., Yang H. M. Functional properties and effect on growth suppression of human neuroblastoma tumors by isotype switch variants of monoclonal antiganglioside GD2 antibody 14.18. Cancer Res. 1989; 49(11)2857–2861
  • Raffaghello L., Marimpietri D., Pagnan G. Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Lett. 2003; 197(1–2)205–209
  • Slart R., Yu A. L., Yaksh T. L., Sorkin L. S. An animal model of pain produced by systemic administration of an immunotherapeutic anti-ganglioside antibody. Pain 1997; 69(1–2)119–125
  • Handgretinger R., Baader P., Dopfer R. A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14.G2a. Cancer Immunol. Immunother. 1992; 35(3)199–204
  • Murray J. L., Cunningham J. E., Brewer H., Phase I. trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors. J. Clin. Oncol. 1994; 12(1)184–193
  • Uttenreuther-Fischer M. M., Huang C. S., Reisfeld R. A., Yu A. L. Pharmacokinetics of anti-ganglioside GD2 mAb 14G2a in a phase I trial in pediatric cancer patients. Cancer Immunol. Immunother. 1995; 41(1)29–36
  • Frost J. D., Hank J. A., Reaman G. H. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma. Cancer 1997; 80: 317–333
  • Gillies S. D., Lo K.-M., Wesolowski J. High-level expression of chimeric antibodies using adapted cDNA variable region cassettes. J. Immunol Methods. 1989; 125: 191–202
  • Barker E., Mueller B. M., Handgretinger R., Herter M., Yu A. L., Reisfeld R. A. Effect of a chimeric anti-ganglioside GD2 antibody on cell-mediated lysis of human neuroblastoma cells. Cancer Res. 1991; 51: 144–149
  • Barker E., Reisfeld R. A. A mechanism for neutrophil-mediated lysis of human neuroblastoma cells. Cancer Res. 1993; 53(2)362–367
  • Mueller B. M., Romerdahl C. A., Gillies S. D., Reisfeld R. A. Enhancement of antibody-dependent cytotoxicity with a chimeric anti-GD2 antibody. J. Immunol. 1990; 144(4)1382–1386
  • Handgretinger R., Anderson K., Lang P. A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur. J. Cancer 1995; 31A(2)261–267
  • Yu A., Uttenreuther-Fischer M., Huang C.-S. I Phase trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol. 1998; 16: 2169–2180
  • Kremens B., Hero B., Esser J. Ocular symptoms in children treated with human-mouse chimeric anti-GD2 mAb ch14.18 for neuroblastoma. Cancer Immunol. Immunother. 2002; 51(2)107–110
  • Uttenreuther-Fischer M. M., Huang C. S., Yu A. L. Pharmacokinetics of human-mouse chimeric anti-GD2 mAb ch14.18 in a phase I trial in neuroblastoma patients. Cancer Immunol. Immunother. 1995; 41(6)331–338
  • Uttenreuther-Fischer M. M., Kruger J. A., Fischer P. Molecular characterization of the anti-idiotypic immune response of a relapse-free neuroblastoma patient following antibody therapy: a possible vaccine against tumors of neuroectodermal origin?. J. Immunol. 2006; 176(12)7775–7786
  • Simon T., Hero B., Faldum A. Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J. Clin. Oncol. 2004; 22(17)3549–3557
  • Simon T., Hero B., Faldum A. Infants with stage 4 neuroblastoma: the impact of the chimeric anti-GD2-antibody ch14.18 consolidation therapy. Klin. Padiatr. 2005; 217(3)147–152
  • Ozkaynak M. F., Sondel P. M., Krailo M. D. I Phase study of chimeric human/murine antiganglioside GD2 monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma inmmediately after hematopoietic stem-cell transplantation: a children's cancer group study. J. Clin. Oncol. 2000; 18: 4077–4085
  • Zeng Y., Fest S., Kunert R. Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Mol. Immunol. 2005; 42(11)1311–1319
  • Gillies S. D., Reilly E. B., Lo K. M., Reisfeld R. A. Antibody-targeted interleukin-2 stimulates T-cell killing of autologous tumor cells. Proc. Natl. Acad. Sci. USA 1992; 89: 1428–1432
  • Hank J. A., Surfus J. E., Gan J. Activation of human effector cells by a tumor reactive recombinant anti-ganglioside GD2 interleukin-2 fusion protein (ch14.18-IL2). Clin. Cancer Res. 1996; 2(12)1951–1959
  • Pancook J. D., Becker J. C., Gillies S. D., Reisfeld R. A. Eradication of established hepatic human neuroblastoma metastases in mice with severe combined immunodeficiency by antibody-targeted interleukin-2. Cancer Immunol. Immunother. 1996; 42(2)88–92
  • King D. M., Albertini M. R., Schalch H., Phase I. clinical trial of the immunocytokine EMD 273063 in melanoma patients. J. Clin. Oncol. 2004; 22(22)4463–4473
  • Osenga K., Hank J., Albertini M. R. A phase I trial of immunocytokine HU14.18-IL12 in children with recurrent or refractory neuroblastoma and other GD2 positivie malignancies: a study of the children's oncology group. Proc. ISBTC 2004; 50
  • Hank J., Gan J., Sternberg A., Ryu H., Gilllies S., Sondel P. The functional effects of anti-hu14.18 antibody activity found in the serum of patients following infusion of immunocytokine (ic) hu14.18-il2 for treatment of neuroblastoma. Advances in Neuroblastoma Research: eleventh conference. 2006, Abstr. 223
  • Yeh S. D., Larson S. M., Burch L. Radioimmunodetection of neuroblastoma with iodine-131-3F8: correlation with biopsy, iodine-131-metaiodobenzylguanidine (MIBG) and standard diagnostic modalities. J. Nucl Med. 1991; 32: 769–776
  • Larson S. M., Pentlow K. S., Volkow N. D. PET scanning of iodine-124-3F8 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J. Nucl Med. 1992; 33: 2020–2023
  • Cheung N. K., Kushner B. H., Kramer K. Monoclonal antibody-based therapy of neuroblastoma. Hematol Oncol Clin. North Am. 2001; 15(5)853–866
  • Cheung N. K., Pentlow K., Graham M. C., Yeh S. D.J., Finn R. D., Larson S. M. Radioimmunotherapy of human neuroblastoma using monoclonal antibody 3F8. Fifth International Radiopharmaceutical Dosimetry Symposium. Oak Ridge Associated Universities, Oak Ridge, TN 1992; 95–112
  • Modak S., Cheung N. K. Antibody-based targeted radiation to pediatric tumors. J. Nucl Med. 2005; 46: 157S–163S
  • Larson S. M., Divgi C., Sgouros G., Cheung N. K.C., Scheinberg D. A. Monoclonal antibodies: basic prniciples-Radioisotope conjugates. Biologic Therapy of Cancer-Principles and Practice, V T De Vita, S Hellman, S A Rosenberg. J.B. Lippincott Co., Philadelphia 2000; 396–412
  • Cheung N. K., Rooney C. Principles of immune and cellular therapy. Principles and Practice of Pediatric Oncology, 4th ed., P. A. Pizzo, D. G. Poplack. J.B. Lippincott Company, Philadelphia 2002; 381–408
  • Kramer K., Cheung N. K., Humm J. Pharmacokinetics and acute toxicology of intraventricular 131 I-monoclonal antibody targeting disialoganglioside in non-human primates. J. Neurooncol. 1997; 35(2)101–111
  • Kramer K., Cheung N. K., Humm J. L. Targeted radioimmunotherapy for leptomeningeal cancer using (131)I-3F8. Med. Pediatr Oncol. 2000; 35(6)716–718
  • Murray J. L., Cunningham J. E., Brewer H., Phase I. trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors. J. Clin. Oncol. 1994; 12: 184–193
  • Reuland P., Geiger L., Thelen M. H. Follow-up in neuroblastoma: comparison of metaiodobenzylguanidine and a chimeric anti-GD2 antibody for detection of tumor relapse and therapy response. J. Pediatr. Hematol. Oncol. 2001; 23(7)437–442
  • Helling F., Zhang S., Shang A. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res. 1995; 55(13)2783–2788
  • Cheung N. K., Guo H. F., Heller G., Cheung I. Y. Induction of Ab3 and Ab3′ antibody was associated with long-term survival after anti-G(D2) antibody therapy of stage 4 neuroblastoma. Clin. Cancer Res. 2000; 6(7)2653–2660
  • Foon K. A., John W. J., Chakraborty M. Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J. Clin. Oncol. 1999; 17: 2889–2895
  • Alfonso M., Diaz A., Hernandez A. M. An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J. Immunol. 2002; 168(5)2523–2529
  • Ragupathi G., Livingston P. O., Hood C. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin. Cancer Res. 2003; 9(14)5214–5220
  • Zeytin H. E., Tripathi P. K., Bhattacharya-Chatterjee M., Foon K. A., Chatterjee S. K. Construction and characterization of DNA vaccines encoding the single-chain variable fragment of the anti-idiotype antibody 1A7 mimicking the tumor-associated antigen disialoganglioside GD2. Cancer Gene Therapy 2000; 7: 1426–1436
  • Yu A. Promising results of a pilot trial of a GD2 directed anti-idiotypic antibody as a vaccine for high risk neuroblastoma. Proc. ASCO Meeting. 2004, Abst. No. 8511
  • Batova A., Kamps A., Gillies S. D., Reisfeld R. A., Yu A. L. The ch14.18-GM-CSF fusion protein is effective at mediating antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro. Clin. Cancer Res. 1999; 5: 4259–4263
  • Manzke O., Russello O., Leenen C., Diehl V., Bohlen H., Berthold F. Immunotherapeutic strategies in neuroblastoma: antitumoral activity of deglycosylated Ricin Aconjugated anti-GD2 antibodies and anti-CD3xanti-GD2 bispecific antibodies. Med. Pediatr Oncol. 2001; 36(1)185–189
  • Lode H. N., Reisfeld R. A., Handgretinger R., Nicolaou K. C., Gaedicke G., Wrasidlo W. Targeted therapy with a novel enediyene antibiotic calicheamicin theta(I)1 effectively suppresses growth and dissemination of liver metastases in a syngeneic model of murine neuroblastoma. Cancer Res. 1998; 58(14)2925–2928
  • Brignole C., Pagnan G., Marimpietri D. Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett. 2003; 197(1–2)231–235
  • Raffaghello L., Pagnan G., Pastorino F. Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett. 2003; 197(1–2)151–155
  • Brignole C., Marimpietri D., Gambini C., Allen T. M., Ponzoni M., Pastorino F. Development of Fab' fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett. 2003; 197(1–2)199–204
  • Zeng Y., Jiang J., Huebener N. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett. 2005; 228(1–2)187–193
  • Otto M., Barfield R. C., Martin W. J. Combination immunotherapy with Clinical-scale enriched human gammadelta T cells, hu14.18 antibody, and the immunocytokine Fc-IL7 in disseminated neuroblastoma. Clin. Cancer Res. 2005; 11(23)8486–8491
  • Miederer M., McDevitt M. R., Borchardt P. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha emitting atomic nanogenerators targeting Ganglioside GD2. Clin. Cancer Res. 2004; 10(20)6985–6992
  • Cheung N.-K. V., Modak S., Lin Y. K. Single chain Fv-streptavidin substantially improved therapeutic index in multi-step targeting directed at disialoganglioside GD2. J. Nucl. Med. 2004; 45(5)867–877
  • Forster-Waldl E., Riemer A. B., Dehof A. K. Isolation and structural analysis of peptide mimotopes for the disialoganglioside GD2, a neuroblastoma tumor antigen. Mol. Immunol. 2005; 42(3)319–325
  • Bolesta E., Kowalczyk A., Wierzbicki A. DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses. Cancer Res. 2005; 65(8)3410–3418
  • Krause A., Guo H. F., Latouche J. B., Tan C., Cheung N. K., Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 1998; 188(4)619–626
  • Rossig C., Bollard C. M., Nuchtern J. G., Merchant D. A., Brenner M. K. Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer 2001; 94(2)228–236

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.