182
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES/Cellular and Molecular Biology

Induction of the Human Heat Shock Promoter HSP70B by Nutritional Stress: Implications for Cancer Gene Therapy

, , , , , & show all
Pages 553-561 | Published online: 11 Jun 2009

REFERENCES

  • Blackburn R. V., Galoforo S. S., Corry P. M., Lee Y. J. Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res 1998; 58: 1358–1362
  • Braiden V., Ohtsuru A., Kawashita Y., Miki F., Sawada T., Ito M., Cao Y., Kaneda Y., Koji T., Yamashita S. Eradication of breast cancer xenografts by hyperthermic suicide gene therapy under the control of the heat shock protein promoter. Hum Gene Ther 2000; 11: 2453–2463
  • Huang Q., Hu J. K., Lohr F., Zhang L., Braun R., Lanzen J., Little J. B., Dewhirst M. W., Li C. Y. Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 2000; 60: 3435–3439
  • Lohr F., Hu K., Huang Q., Zhang L., Samulski T. V., Dewhirst M. W., Li C. Y. Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Biol Phys 2000; 48: 1513–1518
  • Borrelli M. J., Schoenherr D. M., Wong A., Bernock L. J., Corry P. M. Heat-activated transgene expression from adenovirus vectors infected into human prostate cancer cells. Cancer Res 2001; 61: 1113–1121
  • Lee Y. J., Galoforo S. S., Battle P., Lee H., Corry P. M., Jessup J. M. Replicating adenoviral vector-mediated transfer of a heat-inducible double suicide gene for gene therapy. Cancer Gene Ther 2001; 8: 397–404
  • Lohr F., Huang Q., Hu K., Dewhirst M. W., Li C. Y. Systemic vector leakage and transgene expression by intratumorally injected recombinant adenovirus vectors. Clin Cancer Res 2001; 7: 3625–3628
  • Li G. C., He F., Shao X., Urano M., Shen L., Kim D., Borrelli M., Leibel S. A., Gutin P. H., Ling C. C. Adenovirus-mediated heat-activated antisense ku70 expression radiosensitizes tumor cells in vitro and in vivo. Cancer Res 2003; 63: 3268–3274
  • Li C. Y., Dewhirst M. W. Hyperthermia-regulated immunogene therapy. Int J Hyperthermia 2002; 18: 586–596
  • Puisieux I., Odin L., Poujol D., Moingeon P., Tartaglia J., Cox W., Favrot M. Canarypox virus-mediated interleukin 12 gene transfer into murine mammary adenocarcinoma induces tumor suppression and long-term antitumoral immunity. Hum Gene Ther 1998; 9: 2481–2492
  • Seetharam S., Staba M. J., Schumm L. P., Schreiber K., Schreiber H., Kufe D. W., Weichselbaum R. R. Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int J Oncol 1999; 15: 769–773
  • Golab J., Zagozdzon R. Antitumor effects of interleukin-12 in pre-clinical and early clinical studies (review). Int J Mol Med 1999; 3: 537–544
  • Shi F., Rakhmilevich A. L., Heise C. P., Oshikawa K., Sondel P. M., Yang N. S., Mahvi D. M. Intratumoral injection of interleukin-12 plasmid DNA, either naked or in complex with cationic lipid, results in similar tumor regression in a murine model. Mol Cancer Ther 2002; 1: 949–957
  • Liu Y., Ehtesham M., Samoto K., Wheeler C. J., Thompson R. C., Villarreal L. P., Black K. L., Yu J. S. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 2002; 9: 9–15
  • Rakhmilevich A. L., Janssen K., Hao Z., Sondel P. M., Yang N. S. Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a t-cell-independent mechanism. Cancer Gene Ther 2000; 7: 826–838
  • Oppenheim J. J., Feldmann M., Durum S. K. Cytokine reference: A compendium of cytokines and other mediators of host defense. Academic Press, San Diego 2001
  • Cohen J. Il-12 deaths: Explanation and a puzzle. Science 1995; 270: 908
  • Car B. D., Eng V. M., Lipman J. M., Anderson T. D. The toxicology of interleukin-12: A review. Toxicol Pathol 1999; 27: 58–63
  • Atkins M. B., Robertson M. J., Gordon M., Lotze M. T., DeCoste M., DuBois J. S., Ritz J., Sandler A. B., Edington H. D., Garzone P. D., Mier J. W., Canning C. M., Battiato L., Tahara H., Sherman M. L. Phase i evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–417
  • Siddiqui F., Li C. Y., Larue S. M., Poulson J. M., Avery P. R., Pruitt A. F., Zhang X., Ullrich R. L., Thrall D. E., Dewhirst M. W., Hauck M. L. A phase i trial of hyperthermia-induced interleukin-12 gene therapy in spontaneously arising feline soft tissue sarcomas. Molecular Cancer Therapeutics 2007; 6: 380–389
  • Siddiqui F., Li C. Y., Zhang X., Larue S. M., Dewhirst M. W., Ullrich R. L., Avery P. R. Characterization of a recombinant adenovirus vector encoding heat-inducible feline interleukin-12 for use in hyperthermia-induced gene-therapy. Int J Hyperthermia 2006; 22: 117–134
  • He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514
  • Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74
  • Wieder E. D., Hang H., Fox M. H. Measurement of intracellular ph using flow cytometry with carboxy-snarf-1. Cytometry 1993; 14: 916–921
  • Leutenegger C. M., Mislin C. N., Sigrist B., Ehrengruber M. U., Hofmann-Lehmann R., Lutz H. Quantitative real-time pcr for the measurement of feline cytokine mrna. Vet Immunol Immunopathol 1999; 71: 291–305
  • Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 2001; 25: 402–408
  • Grzelak A., Rychlik B., Bartosz G. Reactive oxygen species are formed in cell culture media. Acta Biochim Pol 2000; 47: 1197–1198
  • Grzelak A., Rychlik B., Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med 2001; 30: 1418–1425
  • Morimoto R. I., Tissiáeres A., Georgopoulos C. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, N. Y. 1994
  • Leppa S., Sistonen L. Heat shock response–pathophysiological implications. Ann Med 1997; 29: 73–78
  • Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones 1996; 1: 97–98
  • Kwant M. M., van der Vliet P. C. Differential effect of aphidicolin on adenovirus DNA synthesis and cellular DNA synthesis. Nucleic Acids Res 1980; 8: 3993–4007
  • Ariga H. Effect of aphidicolin on the elongation step of adenovirus DNA replication in vitro. Biochem Biophys Res Commun 1983; 113: 87–95
  • Oguro M., Yamashita T., Ariga H., Nagano H. Adenovirus DNA synthesized in the presence of aphidicolin. Nucleic Acids Res 1984; 12: 1077–1086
  • Taglicht D., Padan E., Oppenheim A. B., Schuldiner S. An alkaline shift induces the heat shock response in escherichia coli. J Bacteriol 1987; 169: 885–887
  • Galkina S. I., Sud'ina G. F., Dergacheva G. B., Margolis L. B. Regulation of intracellular ph by cell-cell adhesive interactions. FEBS Lett 1995; 374: 17–20
  • Moraitis C., Curran B. P. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast saccharomyces cerevisiae. Yeast 2004; 21: 313–323
  • Vacca R. A., de Pinto M. C., Valenti D., Passarella S., Marra E., De Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 2004; 134: 1100–1112
  • Madamanchi N. R., Li S., Patterson C., Runge M. S. Reactive oxygen species regulate heat-shock protein 70 via the jak/stat pathway. Arterioscler Thromb Vasc Biol 2001; 21: 321–326
  • Benjamin I. J., Horie S., Greenberg M. L., Alpern R. J., Williams R. S. Induction of stress proteins in cultured myogenic cells, Molecular signals for the activation of heat shock transcription factor during ischemia. J Clin Invest 1992; 89: 1685–1689
  • Matthys P., Dijkmans R., Proost P., Van Damme J., Heremans H., Sobis H., Billiau A. Severe cachexia in mice inoculated with interferon-gamma-producing tumor cells. Int J Cancer 1991; 49: 77–82
  • Matthys P., Heremans H., Opdenakker G., Billiau A. Anti-interferon-gamma antibody treatment, growth of lewis lung tumours in mice and tumour-associated cachexia. Eur J Cancer 1991; 27: 182–187
  • Patton J. S., Shepard H. M., Wilking H., Lewis G., Aggarwal B. B., Eessalu T. E., Gavin L. A., Grunfeld C. Interferons and tumor necrosis factors have similar catabolic effects on 3t3 l1 cells. Proc Natl Acad Sci USA 1986; 83: 8313–8317
  • Kokal W. A., McCulloch A., Wright P. D., Johnston I. D. Glucose turnover and recycling in colorectal carcinoma. Ann Surg 1983; 198: 601–604
  • Shaw J. H., Wolfe R. R. Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer. The response to glucose infusion, parenteral feeding, and surgical resection. Surgery 1987; 101: 181–191
  • Humberstone D. A., Shaw J. H. Metabolism in hematologic malignancy. Cancer 1988; 62: 1619–1624
  • Shaw J. H., Humberstone D. M., Wolfe R. R. Energy and protein metabolism in sarcoma patients. Ann Surg 1988; 207: 283–289
  • Holroyde C. P., Reichard G. A. Carbohydrate metabolism in cancer cachexia. Cancer Treat Rep 1981; 65(Suppl 5)55–59
  • Goel A., Mathupala S. P., Pedersen P. L. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type ii hexokinase gene expression. J Biol Chem 2003; 278: 15333–15340
  • Pitot H. C., Potter V. R., Morris H. P. Metabolic adaptations in rat hepatomas. I. The effect of dietary protein on some inducible enzymes in liver and hepatoma 5123. Cancer Res 1961; 21: 1001–1008
  • de Blaauw I., Heeneman S., Deutz N. E., von Meyenfeldt M. F. Increased whole-body protein and glutamine turnover in advanced cancer is not matched by an increased muscle protein and glutamine turnover. J Surg Res 1997; 68: 44–55
  • Wasa M., Bode B. P., Abcouwer S. F., Collins C. L., Tanabe K. K., Souba W. W. Glutamine as a regulator of DNA and protein biosynthesis in human solid tumor cell lines. Ann Surg 1996; 224: 189–197

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.