127
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES Clinical Translational Therapeutics

Glyoxalase I Glu111Ala Polymorphism in Patients with Breast Cancer

, , , , , & show all
Pages 655-660 | Published online: 20 Jul 2009

REFERENCES

  • Miyata T., Fu M., Kurokawa K., van Ypersele de Strihou C., Thorpe S., Baynes J. W. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia?. Kidney Int 1998; 54: 1290–1295
  • Evans M. D., Dizdaroglu M., Cooke M. S. Oxidative DNA damage and disease: induction, repair, and significance. Mutat Res 2004; 567: 1–61
  • Kang D., Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 2005; 12: 429–441
  • Beisswenger P. J., Howell S. K., Nelson R. G., Mauer M., Szwergold B. S. α-oxoaldehyde metabolism and diabetic complications. Biochem Soc Trans 2003; 31: 1358–1363
  • Kalousová M., Zima T., Tesa V., Dusilová-Sulková S., Škrha J. Advanced glycoxidation end products in chronic diseases—clinical chemistry and genetic backround. Mutat Res 2005; 579: 37–46
  • Bierhaus A., Hofmann M. A., Ziegler R. A., Nawroth P. P. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus I. The AGE concept. Cardiovasc Res 1998; 37: 586–600
  • Kislinger T., Fu C., Huber B., Qu W., Taguchi A., Yan S. D., Hofmann M., Yan S. F., Pischetsrieder M., Stern D., Schmidt A. M. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell-signaling pathway and modulate gene expression. J Biol Chem 1999; 274: 31740–31749
  • Cengiz K. Increased incidence of neoplasia in chronic renal failure (20 years experience). Int Urol Nephrol 2002; 33: 121–126
  • Schmidt A. M., Yan S. D., Yan S. F., Stern D. M. The biology of the receptor for advanced glycation end products and its ligands. Mol Cell Res 2000; 1489: 99–111
  • Thornalley P. J. Glyoxalase I—structure, function, and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003; 31: 1343–1348
  • Thornalley P. J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 1990; 269: 1–11
  • Gale C. P., Grant P. J. The characterization and functional analysis of the human glyoxalase I gene using methods of bioinformatics. Gene 2004; 340: 251–260
  • Politi P., Minoretii P., Falcone C., Martinelli V., Emanuele E. Association analysis of the functional Ala111Glu polymorphism of the glyoxalase I gene in panic disorder. Neurosci Lett 2006; 396: 163–166
  • Gale C. P., Futers T. S., Summers L. K. Common polymorphisms in the glyoxalase-1 gene and their association with prothrombotic factors. Diab Vasc Dis Res 2004; 1: 34–39
  • Munch G., Keis R., Wessels A., Riederer P., Bahner U., Heidland A., Niwa T., Lemke H. D., Schinzel R. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem 1997; 35: 669–677
  • Henle T., Deppisch R., Beck W., Hergesell O., Hansch G. M., Ritz E. Advanced glycated end-products (AGEs) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogenity of AGE compounds. Nephrol Dial Transplant 1999; 14: 1968–1975
  • Haldane J. B.S. An exact test for randomness of mating. J Genet 1954; 52: 631–635
  • McCann V. J., Davis R. E., Welbourn T. A., Constable J., Beale D. G. Glyoxalase phenotypes in patients with diabetes mellitus. Aust N Z J Med 1981; 11: 380–382
  • Thornalley P. J., Hooper N. I., Jenning P. E., Florkowski C. M., Jones A. M., Lunec J., Barnett A. H. The human red blood cell glyoxalase system in diabetes mellitus. Diab Res Clin Pract 1989; 7: 115–120
  • Di Ilio C., Angelucci S., Pennelli A., Zezz A., Tenaglia R., Sacchetta P. Glyoxalase activities in tumor and nontumor human urogenital tissues. Cancer Lett 1995; 96: 189–193
  • Di Ilio C., Del Boccio G., Casaccia R., Aceto A., Di Giacom F., Federici G. Selenium level and gluthatione activities in normal and neoplastic human lung tissues. Carcinogenesis 1987; 8: 281–284
  • Antognelli C., Baldracchini F., Talesa V. N., Constantini E., Zucchi A., Mearini E. Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J 2006; 12: 222–228
  • Rangnathan S., Tew K. D. Analysis of glyoxalase I from normal and tumor tissue from human colon. Biochim Biophys Acta 1993; 1182: 311–316
  • Rulli A., Carli L., Romani R., Baroni T., Giovannini E., Rosi G., Talesa V. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 2001; 66: 67–72
  • Okado A., Kawasaki Y., Hasuike Y., Takahashi M., Teshima T., Fujii J., Taniguchi N. Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem Biophys Res Commun 1996; 225: 219–224
  • Jones M. B., Krutzsch H., Shu H., Zhao Y., Liotta L. A., Kohn E. C., Petricoin E. F., 3rd. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002; 2: 76–84
  • Zhang D., Tai K. L., Wong L. L., Chiu L., Sethi S. K., Koay E. S.C. Proteomic study reveals that proteins involved in metabolic and detoxification pathway are highly expressed in Her-2/neu-positive breast cancer. Mol Cell Proteom 2005; 11: 1686–1696
  • Kamiya D., Uchihata Y., Ichikawa E., Kato K., Umezawa K. Reversal of anticancer drug resistance by COTC based on intracellular glutathione and glyoxalase I. Bioorg Med Chem Lett 2005; 15: 1111–1114
  • Thornalley P. J. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherpy. Biochem Soc Trans 2003; 31: 1372–1377
  • Samadi A. A., Fullerton S. A., Tortorelis D. G., Johnson G. B., Davidson S. D., Choudhury M. S., Mallouh C., Tazaki H., Konno S. Glyoxalase I phenotype as a potential risk factor for prostate carcinoma. Urology 2001; 57: 183–187
  • Rulli A., Antognelli C., Prezzi E., Baldracchini F., Piva F., Giovanni E., Talesa V. A possible regulatory role of 17β-estradiol and tamoxifen on glyoxalase I and glyoxalase II genes expression in MCF7 and BT20 human breast cancer cells. Breast Cancer Res Treat 2006; 96: 187–196
  • Tesařová P., Kalousová M., Trnková B., Soukupová J., Argalašová S., Mestek O., Petruželka L., Zima T. Carbonyl and oxidative stress in patients with breast cancer is there a relation to the stage of the disease?. Neoplasma 2007; 54: 219–224
  • Tesařová P., Kalousová M., Jáchymová M., Mestek O., Petruželka L., Zima T. Receptor for advanced glycation end products (RAGE)—soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest 2007; 25: 720–725
  • Kobayashi S., Kubo H., Suzuki T., Ishizawa K., Yamada M., He M., Yamamoto Y., Yamamoto H., Sasano H., Sasaki H., Suzuki S. Endogenous secretory receptor for advanced glycation end products in non-small-cell lung carcinoma. Am J Respir Crit Care Med 2007; 175: 184–189

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.