283
Views
13
CrossRef citations to date
0
Altmetric
Review

Ras-Mediated Activation of NF-κB and DNA Damage Response in Carcinogenesis

& ORCID Icon
Pages 185-208 | Received 07 Mar 2019, Accepted 22 Jan 2020, Published online: 06 Feb 2020

References

  • Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5(1):14.
  • Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Stroke. 2004;35(8):1999–2010.
  • Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Gansler T, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. CA Cancer J Clin. 2004;54(4):190–207. doi:10.3322/canjclin.54.4.190.
  • Eyre H, Kahn R, Robertson RM, American Cancer Society, the American Diabetes Association, the American Heart Association, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Diabetes Care. 2004;27(7):1812–1824. doi:10.2337/diacare.27.7.1812.
  • Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation. 2004;109(25):3244–3255. doi:10.1161/01.CIR.0000133321.00456.00.
  • Aly HF. Dietary habits and relation to cancer disease in different population. Arch Can Res. 2012;1(1):2.
  • Chow A. Cell cycle control by oncogenes and tumor suppressors: driving the transformation of normal cells into cancerous cells. Nat Educ. 2010;3(7):9.
  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA: Cancer J Clin. 2007;57:43–66. doi:10.3322/canjclin.57.1.43.
  • Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, et al. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother. 2007;61(10):640–658. doi:10.1016/j.biopha.2007.10.006.
  • Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12(6):1807–1823. doi:10.1177/1557988318798279.
  • Khan N, Afaq F, Mukhtar H. Lifestyle as risk factor for cancer: evidence from human studies. Cancer Lett. 2010;293(2):133–143. doi:10.1016/j.canlet.2009.12.013.
  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953. doi:10.1002/ijc.31937.
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Hemminki K, Försti A, Khyatti M, Anwar WA, Mousavi M. Cancer in immigrants as a pointer to the causes of cancer. Eur J Public Health. 2014;24(Suppl 1):64–71. doi:10.1093/eurpub/cku102.
  • GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–1544. Erratum in: Lancet. 2017;389(10064):e1.
  • Jemal A, Center MM, De Santis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–1907. doi:10.1158/1055-9965.EPI-10-0437.
  • Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448–451. doi:10.21037/jtd.2017.02.75.
  • Hayes NS, Hohman K, Vinson C, Pratt-Chapman M. Comprehensive cancer control in the U.S.: summarizing twenty years of progress and looking ahead. Cancer Causes Control. 2018;29(12):1305–1309. doi:10.1007/s10552-018-1124-y.
  • Romero Y, Trapani D, Johnson S, Tittenbrun Z, Given L, Hohman K, et al. National cancer control plans: a global analysis. Lancet Oncol. 2018;19(10):e546–e555. doi:10.1016/S1470-2045(18)30681-8.
  • Knaul FM, Arreola-Ornelas H, Rodriguez NM, Méndez-Carniado O, Kwete XJ, Puentes-Rosas E, et al. Avoidable mortality: the core of the global cancer divide. JGO. 2018;4:1–12. doi:10.1200/JGO.17.00190.
  • Bray F, Soerjomataram I. The changing global burden of cancer: transitions in human development and implications for cancer prevention and control. In: Gelband H, Jha P, Sankaranarayanan R, Horton S, editors. Cancer: disease control priorities. 3rd ed. Vol. 3. Washington (DC): The International Bank for Reconstruction and Development/The World Bank; 2015 (Chapter 2).
  • Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100–110. doi:10.1093/carcin/bgp263.
  • https://dtp.cancer.gov/timeline/noflash/milestones/M4_Nixon.htm; https://www.cancer.gov/about-nci/legislative/history/national-cancer-act-1971
  • Baselga J, Bhardwaj N, Cantley LC, DeMatteo R, DuBois RN, Foti M, et al. AACR Cancer Progress Report 2015. Clin Cancer Res. 2015;21(19_Supplement):S1–S128. doi:10.1158/1078-0432.CCR-15-1846.
  • You W, Henneberg M. Cancer incidence increasing globally: the role of relaxed natural selection. Evol Appl. 2018;11(2):140–152. doi:10.1111/eva.12523.
  • Prager GW, Braga S, Bystricky B, Qvortrup C, Criscitiello C, Esin E, et al. Global cancer control: responding to the growing burden, rising costs and inequalities in access. ESMO Open. 2018;3(2):e000285. doi:10.1136/esmoopen-2017-000285.
  • Cooper GM. The cell: a molecular approach. 2nd ed. Sunderland (MA): Sinauer Associates; 2000. The Development and Causes of Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9963/
  • Nambiar M, Kari V, Raghavan SC. Chromosomal translocations in cancer. Biochim Biophys Acta-Rev Cancer. 2008;1786(2):139–152. doi:10.1016/j.bbcan.2008.07.005.
  • Hernando E. Aneuploidy advantages? Science. 2008;322(5902):692–693. doi:10.1126/science.1166151.
  • Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008;40(6):695–701. doi:10.1038/ng.f.136.
  • Gupta A, Ahmad A, Dar A, Bhatt A, Khan R. Selective targeting of cancer cells using personalized nanomedicine. Toxicol Forensic Med Open J. 2016;1(1):e12–e13. doi:10.17140/TFMOJ-1-e005.
  • Gupta A, Ahmad A, Dar AI, Khan R. Synthetic lethality: from research to precision cancer nanomedicine. CCDT. 2018;18(4):337–346. doi:10.2174/1568009617666170630141931.
  • Aggarwal BB, Danda D, Gupta S, Gehlot P. Models for prevention and treatment of cancer: problems vs promises. Biochem Pharmacol. 2009;78(9):1083–1094. doi:10.1016/j.bcp.2009.05.027.
  • Yokota J. Tumor progression and metastasis. Carcinogenesis. 2000;21(3):497–503. doi:10.1093/carcin/21.3.497.
  • Alexey S, Vadym K. Cancer genes and chromosome instability, oncogene and cancer – from bench to clinic, Yahwardiah Siregar, IntechOpen; 2013. https://www.intechopen.com/books/oncogene-and-cancer-from-bench-to-clinic/cancer-genes-and-chromosome-instability
  • Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol. 2019;3:7.
  • Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37. doi:10.1016/j.cell.2013.03.002.
  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–158. doi:10.1038/nature05610.
  • Ambrosone CB, Harris CC. The development of molecular epidemiology to elucidate cancer risk and prognosis: a historical perspective. Int J Mol Epidemiol Genet. 2010;1(2):84–91.
  • Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–274. doi:10.1126/science.1133427.
  • Fleming JL, Huang TH, Toland AE. The role of parental and grandparental epigenetic alterations in familial cancer risk. Cancer Res. 2008;68(22):9116–9121. doi:10.1158/0008-5472.CAN-08-2184.
  • Khan Z, Bisen PS. Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta-Rev Cancer. 2013;1836(1):123–145. doi:10.1016/j.bbcan.2013.04.002.
  • Bours V, Bentires-Alj M, Hellin A-C, Viatour P, Robe P, Delhalle S, et al. Nuclear factor-κB, cancer, and apoptosis. Biochem Pharmacol. 2000;60(8):1085–1089. doi:10.1016/S0006-2952(00)00391-9.
  • Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5(4):a006098. doi:10.1101/cshperspect.a006098.
  • Harris CC. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res. 1991;51(18 Suppl):5023s–5044s.
  • Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers (Basel). 2014;6(4):2155–2186. doi:10.3390/cancers6042155.
  • Kufe DW, Pollock RE, Weichselbaum RR, editors. Holland–Frei cancer medicine. Hamilton (ON): BC Decker; 2003.
  • Aggarwal BB, Vijayalekshmi R, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15(2):425–430. doi:10.1158/1078-0432.CCR-08-0149.
  • Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers-current perspectives. Indian J Med Res. 2010;132(2):129–149.
  • Bancroft CC, Chen Z, Dong G, Sunwoo JB, Yeh N, Park C, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin Cancer Res. 2001;7(2):435–442.
  • Lingen M. Angiogenesis in the development of head and neck cancer and its inhibition by chemopreventive agents. Crit Rev Oral Biol Med. 1999;10(2):153–164. doi:10.1177/10454411990100020301.
  • Bankfalvi A, Krassort M, Vegh A, Felszeghy E, Piffko J. Deranged expression of the E‐cadherin/β‐catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J Oral Pathol Med. 2002;31(8):450–457. doi:10.1034/j.1600-0714.2002.00147.x.
  • Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol. 1989;108(6):2435–2447. doi:10.1083/jcb.108.6.2435.
  • Kim MS, Li S, Bertolami C, Cherrick H, Park N. State of p53, Rb and DCC tumor suppressor genes in human oral cancer cell lines. Anticancer Res. 1993;13(5A):1405–1413.
  • Munn LL. Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 2017;9(2):e1370.
  • Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park, N.Y.). 2002;16(2):217–226.
  • Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 2009;8(13):2005–2013. doi:10.4161/cc.8.13.8985.
  • Fernandes JV, DE Medeiros Fernandes TA, DE Azevedo JC, Cobucci RN, DE Carvalho MG, Andrade VS, et al. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett. 2015;9(3):1015–1026. doi:10.3892/ol.2015.2884.
  • Kanda Y, Osaki M, Okada F. Chemopreventive strategies for inflammation-related carcinogenesis: current status and future direction. IJMS. 2017;18(4):867. doi:10.3390/ijms18040867.
  • Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem. 2011;351(1–2):41–58. doi:10.1007/s11010-010-0709-x.
  • Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol. 2015;89(3):289–317. doi:10.1007/s00204-014-1448-7.
  • Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer. 2011;2(3):216–231. doi:10.1177/1947601911408081.
  • Wang ML, Walsh R, Robinson KL, Burchard J, Bartz SR, Cleary M, et al. Gene expression signature of c-MYCimmortalized human fibroblasts reveals loss of growth inhibitory response to TGFβ. Cell Cycle. 2011;10(15):2540–2548. doi:10.4161/cc.10.15.16309.
  • Barbacid M. Ras genes. Annu Rev Biochem. 1987;56(1):779–827. doi:10.1146/annurev.bi.56.070187.004023.
  • Avraham H, Park S-Y, Schinkmann K, Avraham S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12(3):123–133. doi:10.1016/S0898-6568(99)00076-5.
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22. doi:10.1038/nrc969.
  • Rajalingam K, Schreck R, Rapp UR, Albert Š. Ras oncogenes and their downstream targets. Biochim Biophys Acta-Mol Cell Res. 2007;1773(8):1177–1195. doi:10.1016/j.bbamcr.2007.01.012.
  • Murugan AK, Munirajan AK, Tsuchida N. Ras oncogenes in oral cancer: the past 20 years. Oral Oncol. 2012;48(5):383–392. doi:10.1016/j.oraloncology.2011.12.006.
  • Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9(7):517–531. doi:10.1038/nrm2438.
  • Rogers C, Moukdar F, McGee MA, Davis B, Buehrer BM, Daniel KW, et al. EGF receptor (ERBB1) abundance in adipose tissue is reduced in insulin-resistant and type 2 diabetic women. J Clin Endocrinol Metabol. 2012;97(3):E329–E340. doi:10.1210/jc.2011-1033.
  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–183. doi:10.1210/edrv.22.2.0428.
  • Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, et al. Protein kinases and phosphatases in the control of cell fate. Enzyme Res. 2011;2011:1–26. doi:10.4061/2011/329098.
  • Ahmad A, Fauzia E, Kumar M. Gelatin-coated polycaprolactone nanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen-glucose deprivation induced inflammatory stress. ACS Biomater Sci Eng. 2018;5:683–695.
  • Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6(3):203–208. doi:10.1016/j.ccr.2004.09.003.
  • Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression. Biomedicines. 2018;6(3):82. doi:10.3390/biomedicines6030082.
  • Kaufman CK, Fuchs E. It’s got you covered: NF-κB in the epidermis. J Cell Biol. 2000;149(5):999–1004. doi:10.1083/jcb.149.5.999.
  • Burow ME, Weldon CB, Melnik LI, Duong BN, Collins-Burow BM, Beckman BS, et al. PI3-K/AKT regulation of NF-κB signaling events in suppression of TNF-induced apoptosis. Biochem Biophys Res Commun. 2000;271(2):342–345. doi:10.1006/bbrc.2000.2626.
  • Jones RG, Saibil SD, Pun JM, Elford AR, Bonnard M, Pellegrini M, et al. NF-κB couples protein kinase B/Akt signaling to distinct survival pathways and the regulation of lymphocyte homeostasis in vivo. J Immunol. 2005;175(6):3790–3799. doi:10.4049/jimmunol.175.6.3790.
  • Lee SB, Hong SH, Kim H, Um H-D. Co-induction of cell death and survival pathways by phosphoinositide 3-kinase. Life Sci. 2005;78(1):91–98. doi:10.1016/j.lfs.2005.04.035.
  • Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor κB in cancer cells versus normal cells. Arch Biochem Biophys. 2000;376(2):338–346. doi:10.1006/abbi.2000.1742.
  • Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene. 2004;23(30):5203–5214. doi:10.1038/sj.onc.1207641.
  • Carpenter CL, Cantley LC. Phosphoinositide kinases. Curr Opin Cell Biol. 1996;8(2):153–158. doi:10.1016/S0955-0674(96)80060-3.
  • Stambolic V, Mak TW, Woodgett JR. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene. 1999;18(45):6094–6103. doi:10.1038/sj.onc.1203126.
  • Romashkova JA, Makarov SS. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999;401(6748):86–90. doi:10.1038/43474.
  • Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):15. doi:10.3390/cells5020015.
  • Egan LJ, Toruner M. NF-kappaB signaling: pros and cons of altering NF-kappaB as a therapeutic approach. Ann N Y Acad Sci. 2006;1072(1):114–122. doi:10.1196/annals.1326.009.
  • Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 1999;45(1):7–17.
  • Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86. doi:10.1186/1476-4598-12-86.
  • Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14(1):45–55. doi:10.1517/14728220903431069.
  • Shi JH, Sun SC. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. Front Immunol. 2018;9:1849.
  • Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut. 2003;52(1):144–151. doi:10.1136/gut.52.1.144.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. Review. Erratum in: Microbiol Mol Biol Rev. 2012 Jun;76(2):496. doi:10.1128/MMBR.00031-10.
  • Vermeulen L, De WG, Van DP, Vanden BW, Haegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). Embo J. 2003;22(6):1313–1324. doi:10.1093/emboj/cdg139.
  • Koul HK, Pal M, Koul S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4(9–10):342–359. doi:10.1177/1947601913507951.
  • Guma M, Stepniak D, Shaked H, Spehlmann ME, Shenouda S, Cheroutre H, et al. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. J Exp Med. 2011;208(9):1889–1900. Erratum in: J Exp Med. 2012;209(10):1901. doi:10.1084/jem.20110242.
  • Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFκB-signaling pathway in cancer. OTT. 2018;11:2063–2073. doi:10.2147/OTT.S161109.
  • Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
  • Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–558. doi:10.1038/nri.2017.52.
  • Sun SC. The noncanonical NF-κB pathway. Immunol Rev. 2012;246(1):125–140. doi:10.1111/j.1600-065X.2011.01088.x.
  • Tegowski M, Baldwin A. Noncanonical NF-κB in Cancer. Biomedicines. 2018;6(2):66. doi:10.3390/biomedicines6020066.
  • Turgeon MO, Perry NJS, Poulogiannis G. DNA damage, repair, and cancer metabolism. Front Oncol. 2018;8(15):5.
  • Carol B, Anil RP, Valentine N, Harris B. DNA damage, DNA repair and cancer, new research directions in DNA repair, Clark Chen, IntechOpen; 2013. https://www.intechopen.com/books/new-research-directions-in-dna-repair/dna-damage-dna-repair-and-cancer.
  • Basu AK, Nohmi T. Chemically-induced DNA damage, mutagenesis, and cancer. IJMS. 2018;19(6):1767. doi:10.3390/ijms19061767.
  • Basu AK. DNA damage, mutagenesis and cancer. IJMS. 2018;19(4):970. doi:10.3390/ijms19040970.
  • Kitagishi Y, Kobayashi M, Matsuda S. Defective DNA repair systems and the development of breast and prostate cancer. Int J Oncol. 2013;42(1):29–34. doi:10.3892/ijo.2012.1696.
  • Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018;17(12):1816–1841. doi:10.1039/C7PP00395A.
  • Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst). 2017;54:22–29. doi:10.1016/j.dnarep.2017.03.009.
  • Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–254. doi:10.1038/85798.
  • Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018;46(5):1213–1224. doi:10.1042/BST20180519.
  • Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett. 2012;327(1–2):26–47. doi:10.1016/j.canlet.2012.01.016.
  • Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. doi:10.1038/cdd.2017.174.
  • Karamouzis MV, Gorgoulis VG, Papavassiliou AG. Transcription factors and neoplasia: vistas in novel drug design. Clin Cancer Res. 2002;8(5):949–961.
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi:10.1089/ars.2012.5149.
  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–1078. doi:10.1038/nature08467.
  • Patel R, Rinker L, Peng J, Chilian WM. Reactive oxygen species: the good and the bad, Reactive Oxygen Species (ROS) in living cells. Cristiana Filip and Elena Albu, IntechOpen; 2017. doi:10.5772/intechopen.71547.https://www.intechopen.com/books/reactive-oxygen-species-ros-in-living-cells/reactive-oxygen-species-the-good-and-the-bad.
  • Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1–44. doi:10.1155/2016/1245049.
  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1–13. doi:10.1155/2017/8416763.
  • Cadet J, Davies KJ. Oxidative DNA damage & repair: an introduction. Free Radic Biol Med. 2017;107:2–12. doi:10.1016/j.freeradbiomed.2017.03.030.
  • Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–656. doi:10.1016/j.cell.2017.01.002.
  • Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7(1):20–37. doi:10.1158/2159-8290.CD-16-0860.
  • Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol. 2017;19(1):1–9. doi:10.1038/ncb3452.
  • Radchenko EA, McGinty RJ, Aksenova AY, Neil AJ, Mirkin SM. Quantitative analysis of the rates for repeat-mediated genome instability in a yeast experimental system. In: Genome instability. New York: Springer; 2018. p. 421–438.
  • Misenko SM, Patel DS, Her J, Bunting SF. DNA repair and cell cycle checkpoint defects in a mouse model of ‘BRCAness’ are partially rescued by 53BP1 deletion. Cell Cycle. 2018;17:1–11. doi:10.1080/15384101.2018.1456295.
  • Martin-Morales L, Rofes P, Diaz-Rubio E, Llovet P, Lorca V, Bando I, et al. Novel genetic mutations detected by multigene panel are associated with hereditary colorectal cancer predisposition. PLoS One. 2018;13(9):e0203885. doi:10.1371/journal.pone.0203885.
  • Wang T, Stadler ZK, Zhang L, Weiser MR, Basturk O, Hechtman JF, et al. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations. Familial Cancer. 2018;17(2):225–228. doi:10.1007/s10689-017-0031-9.
  • Earl C, Bagnéris C, Zeman K, Cole A, Barrett T, Savva R. A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acid Res. 2018;46(8):4286–4300. doi:10.1093/nar/gky217.
  • Yukutake M, Hayashida M, Aoki NS, Kuraoka I. Oligo swapping method for in vitro DNA repair substrate containing a single DNA lesion at a specific site. Gene Environ. 2018;40(1):23.
  • Li J, Svilar D, McClellan S, Kim J-H, Ahn E-YE, Vens C, et al. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget. 2018;9(60):31719. doi:10.18632/oncotarget.25859.
  • Mattar M-AM, Zekri A-R, Hussein N, Morsy H, Esmat G, Amin MA. Polymorphisms of base-excision repair genes and the hepatocarcinogenesis. Gene. 2018;675:62–68. doi:10.1016/j.gene.2018.06.056.
  • Sengupta S, Yang C, Hegde ML. Acetylation of oxidized base repair-initiating NEIL1 DNA glycosylase required for chromatin-bound repair complex formation in the human genome increases cellular resistance to oxidative stress. DNA Repair. 2018;66:1–10. doi:10.1016/j.dnarep.2018.04.001.
  • Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly (ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol Cell. 2018;71(2):319–331. e313. doi:10.1016/j.molcel.2018.06.004.
  • Ta HQ, Sleppy R, Dworak N, Allend JA, Gioeli D. Checkpoint kinase 2 and androgen receptor cross-talk regulate the DDR and prostate cancer growth. Paper presented at: Nuclear Receptors: New Roles for Nuclear Receptors in Development, Health and Disease Conference, 2018.
  • Tay LS, Krishnan V, Sankar H, Chong YL, Chuang LSH, Tan TZ, et al. RUNX poly (ADP-Ribosyl) ation and BLM interaction facilitate the Fanconi Anemia pathway of DNA repair. Cell Rep. 2018;24(7):1747–1755. doi:10.1016/j.celrep.2018.07.038.
  • Peng H, Yao S, Dong Q, Zhang Y, Gong W, Jia Z, et al. Excision repair cross-complementing group 1 (ERCC1) overexpression inhibits cell apoptosis and is associated with unfavorable prognosis of esophageal squamous cell carcinoma. Medicine. 2018;31:97. doi:10.1097/MD.0000000000011697.
  • Wang Y-H, Hariharan A, Bastianello G, Toyama Y, Shivashankar GV, Foiani M, et al. IPMK and PTEN regulate nuclear phosphoinositide-dependent ATR signaling upon DNA damage. Biophys J. 2018;114(3):82a. doi:10.1016/j.bpj.2017.11.492.
  • Mejias-Navarro F, Gomez-Cabello D, Huertas P. RAD51 paralogs regulate double strand break repair pathway choice by limiting Ku complex retention. bioRxiv. 2018;282855.
  • Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, et al. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun. 2018;9(1):34.
  • Chen C-C, Feng W, Lim PX, Kass EM, Jasin M. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu Rev Cancer Biol. 2018;2(1):313–336. doi:10.1146/annurev-cancerbio-030617-050502.
  • Starita LM, Islam MM, Banerjee T, Adamovich AI, Gullingsrud J, Fields S, et al. A multiplex homology-directed DNA repair assay reveals the impact of more than 1,000 BRCA1 missense substitution variants on protein function. Am J Hum Genet. 2018;103(4):498–508. doi:10.1016/j.ajhg.2018.07.016.
  • Benitez A, Liu W, Palovcak A, Wang G, Moon J, An K, et al. FANCA promotes DNA double-strand break repair by catalyzing single-strand annealing and strand exchange. Mol Cell. 2018;71(4):621–628.e624. doi:10.1016/j.molcel.2018.06.030.
  • Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23(1):239–254.e6. doi:10.1016/j.celrep.2018.03.076.
  • Goellner EM, Putnam CD, Graham WJ, Rahal CM, Li B-Z, Kolodner RD. Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners. Nat Struct Mol Biol. 2018;25(8):650–659. doi:10.1038/s41594-018-0092-y.
  • Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res. 2001;7(7):1998–2004.
  • Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–664. doi:10.1038/nature11282.
  • Wong HL, Peters U, Hayes RB, Huang WY, Schatzkin A, Bresalier RS, et al. Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk. Eur J Cancer. 2010;46(13):2457–2466. doi:10.1016/j.ejca.2010.04.020.
  • Robinson D, Van Allen EM, Wu Y-M, Schultz N, Lonigro RJ, Mosquera J-M, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–1228. doi:10.1016/j.cell.2015.05.001.
  • Votino C, Laudanna C, Parcesepe P, Giordano G, Remo A, Manfrin E, et al. Aberrant BLM cytoplasmic expression associates with DNA damage stress and hypersensitivity to DNA-damaging agents in colorectal cancer. J Gastroenterol. 2017;52(3):327–340. doi:10.1007/s00535-016-1222-0.
  • Arora A, Abdel-Fatah TM, Agarwal D, Doherty R, Moseley PM, Aleskandarany MA, et al. Transcriptomic and protein expression analysis reveals clinicopathological significance of Bloom Syndrome Helicase (BLM) in breast cancer. Mol Cancer Ther. 2015;14(4):1057–1065. doi:10.1158/1535-7163.MCT-14-0939.
  • Cleary SP, Zhang W, Di Nicola N, Aronson M, Aube J, Steinman A, et al. Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res. 2003;63(8):1769–1771.
  • Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. 1998. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 1993–2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1247/*
  • Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416. doi:10.1001/jama.2017.7112.
  • Streff H, Profato J, Ye Y, Nebgen D, Peterson SK, Singletary C, et al. Cancer incidence in first- and second-degree relatives of BRCA1 and BRCA2 mutation carriers. Oncologist. 2016;21(7):869–874. doi:10.1634/theoncologist.2015-0354.
  • Metcalfe K, Lubinski J, Lynch HT, Ghadirian P, Foulkes WD, Kim-Sing C, et al. Family history of cancer and cancer risks in women with BRCA1 or BRCA2 mutations. J Natl Cancer Inst. 2010;102(24):1874–1878. doi:10.1093/jnci/djq443.
  • de Sanjosé S, Léoné M, Bérez V, Izquierdo A, Font R, Brunet JM, et al. Prevalence of BRCA1 and BRCA2 germline mutations in young breast cancer patients: a population-based study. Int J Cancer. 2003;106(4):588–593. doi:10.1002/ijc.11271.
  • Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–399. doi:10.1038/nature10933.
  • Friedenson B. BRCA1 and BRCA2 pathways and the risk of cancers other than breast or ovarian. MedGenMed. 2005;7(2):60.
  • Mersch J, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015;121(2):269–275. doi:10.1002/cncr.29041.
  • Sopik V, Phelan C, Cybulski C, Narod SA. BRCA1 and BRCA2 mutations and the risk for colorectal cancer. Clin Genet. 2015;87(5):411–418.
  • Williams LH, Choong D, Johnson SA, Campbell IG. Genetic and epigenetic analysis of CHEK2 in sporadic breast, colon, and ovarian cancers. Clin Cancer Res. 2006;12(23):6967–6972. doi:10.1158/1078-0432.CCR-06-1770.
  • Kukita Y, Okami J, Yoneda-Kato N, Nakamae I, Kawabata T, Higashiyama M, et al. Homozygous inactivation of CHEK2 is linked to a familial case of multiple primary lung cancer with accompanying cancers in other organs. Cold Spring Harb Mol Case Stud. 2016;2(6):a001032. doi:10.1101/mcs.a001032.
  • Li P, Xiao ZT, Braciak TA, Ou QJ, Chen G, Oduncu FS. Evidence for an association of ERCC1 expression and mismatch repair status with overall survival in colorectal cancer patients. Oncol Res Treat. 2017;40(11):702–706. doi:10.1159/000479068.
  • Choueiri MB, Shen JP, Gross AM, Huang JK, Ideker T, Fanta P. ERCC1 and TS expression as prognostic and predictive biomarkers in metastatic colon cancer. PLoS One. 2015;10(6):e0126898. doi:10.1371/journal.pone.0126898.
  • Pilarski R, Patel DA, Weitzel J, McVeigh T, Dorairaj JJ, Heneghan HM, et al. The KRAS-variant is associated with risk of developing double primary breast and ovarian cancer. PLoS One. 2012;7(5):e37891. doi:10.1371/journal.pone.0037891.
  • Keane FK, Ratner ES. The KRAS-variant genetic test as a marker of increased risk of ovarian cancer. Rev Obstet Gynecol. 2010;3(3):118–121.
  • Hewitt LC, Saito Y, Wang T, Matsuda Y, Oosting J, Silva ANS, et al. KRAS status is related to histological phenotype in gastric cancer: results from a large multicentre study. Gastric Cancer. 2019:22(6):1204. doi:10.1007/s10120-019-00975-3.
  • Situ Y, Chung L, Lee CS, Ho V. MRN (MRE11-RAD50-NBS1) complex in human cancer and prognostic implications in colorectal cancer. IJMS. 2019;20(4):816. doi:10.3390/ijms20040816.
  • Ho V, Chung L, Singh A, Lea V, Abubakar A, Lim SH, et al. Overexpression of the MRE11-RAD50-NBS1 (MRN) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis. BMC Cancer. 2018;18(1):869. doi:10.1186/s12885-018-4776-9.
  • Yuan SS, Hou MF, Hsieh YC, Huang CY, Lee YC, Chen YJ, et al. Role of MRE11 in cell proliferation, tumor invasion, and DNA repair in breast cancer. J Natl Cancer Inst. 2012;104(19):1485–1502. doi:10.1093/jnci/djs355.
  • Millis SZ, Ikeda S, Reddy S, Gatalica Z, Kurzrock R. Landscape of phosphatidylinositol-3-kinase pathway alterations across 19–784 diverse solid tumors. JAMA Oncol. 2016;2(12):1565–1573. doi:10.1001/jamaoncol.2016.0891.
  • Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther. 2016;9:203–210.
  • Markman B, Atzori F, Pérez-García J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol. 2010;21(4):683–691. doi:10.1093/annonc/mdp347.
  • Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev. 2017;59:93–101.
  • Ko E, Seo HW, Jung ES, Ju S, Kim BH, Cho H, et al. PI3Kδ is a therapeutic target in hepatocellular carcinoma. Hepatology. 2018;68(6):2285–2300. doi:10.1002/hep.30307.
  • Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, et al. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res. 2015;43(6):3180–3196. doi:10.1093/nar/gkv175.
  • Smirnova M, Van Komen S, Sung P, Klein HL. Effects of tumor-associated mutations on Rad54 functions. J Biol Chem. 2004;279(23):24081–24088. doi:10.1074/jbc.M402719200.
  • Zhang Y, Cao L, Nguyen D, Lu H. TP53 mutations in epithelial ovarian cancer. Transl Cancer Res. 2016;5(6):650–663. doi:10.21037/tcr.2016.08.40.
  • Rechsteiner M, Zimmermann AK, Wild PJ, Caduff R, von Teichman A, Fink D, et al. TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp Mol Pathol. 2013;95(2):235–241. doi:10.1016/j.yexmp.2013.08.004.
  • Wang X, Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget. 2017;8(1):624–643.
  • Zhou G, Liu Z, Myers JN. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J Cell Biochem. 2016;117(12):2682–2692. doi:10.1002/jcb.25592.
  • Schultheis AM, Martelotto LG, De Filippo MR, Piscuglio S, Ng CK, Hussein YR, et al. TP53 mutational spectrum in endometrioid and serous endometrial cancers. Int J Gynecol Pathol. 2016;35(4):289–300. doi:10.1097/PGP.0000000000000243.
  • Henning RJ, Bourgeois M, Harbison RD. Poly (ADP-ribose) polymerase (PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders. Cardiovasc Toxicol. 2018;18(6):493–506. doi:10.1007/s12012-018-9462-2.
  • Faraoni I, Graziani G. Role of BRCA mutations in cancer treatment with poly (ADP-ribose) polymerase (PARP) inhibitors. Cancers. 2018;10(12):487. doi:10.3390/cancers10120487.
  • Marijon H, Lee DH, Ding L, Sun H, Gery S, de Gramont A, et al. Co-targeting poly (ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: higher synergism in BRCA mutated cells. Biomed Pharmacother. 2018;99:543–551. doi:10.1016/j.biopha.2018.01.045.
  • Jarrar A, Lotti F, DeVecchio J, Ferrandon S, Gantt G, Mace A, et al. Poly (ADP‐Ribose) polymerase inhibition sensitizes colorectal cancer‐initiating cells to chemotherapy. Stem Cells. 2018; 37(1):42–53. doi:10.1002/stem.2929.
  • Rupp M, Mouhri ZS, Stochaj U, Jean-Claude B. Tandem targeting of poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor (EGFR) as a novel strategy for enhancing radio-and chemosensitivity of refractory tumors. In: AACR; 2018.
  • Wielgos ME, Zhang Z, Rajbhandari R, Cooper TS, Zeng L, Forero A, et al. Trastuzumab resistant HER2+ breast cancer cells retain sensitivity to poly (ADP-ribose) polymerase (PARP) inhibition. Mol Cancer Ther. 2018;17(5):921–930. doi:10.1158/1535-7163.MCT-17-0302.
  • Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–921. doi:10.1038/nature03445.
  • Peto J, Stratton M. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and Other Genes. Br J Cancer. 2018;86:76–83.
  • Girardi F, Barnes DR, Barrowdale D, Frost D, Brady AF, Miller C, et al. Risks of breast or ovarian cancer in BRCA1 or BRCA2 predictive test negatives: findings from the EMBRACE study. Genet Med. 2018;20(12):1575–1582. doi:10.1038/gim.2018.44.
  • Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5(4):387–393. doi:10.1016/j.molonc.2011.07.001.
  • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–244. doi:10.1016/S0140-6736(10)60892-6.
  • Reiss KA, Maxwell KN, Nathanson K, Nathanson K, Teitelbaum UR, O'Hara MH, et al. A single arm phase II study of rucaparib maintenance in patients with advanced pancreatic adenocarcinoma and a known deleterious BRCA1, BRCA2 or PALB2 mutation who have achieved stability on platinum therapy. J Clin Oncol. 2018;36(4_suppl):TPS531.
  • Kotsopoulos J, Gronwald J, Karlan B, Rosen B, Huzarski T, Moller P, et al. Age-specific ovarian cancer risks among women with a BRCA1 or BRCA2 mutation. Gynecol Oncol. 2018;150(1):85–91. doi:10.1016/j.ygyno.2018.05.011.
  • Tsibulak I, Wieser V, Degasper C, Shivalingaiah G, Wenzel S, Sprung S, et al. BRCA1 and BRCA2 mRNA-expression prove to be of clinical impact in ovarian cancer. Brit J Cancer. 2018;119(6):683–692.
  • Shuai F, Wang B, Dong S. miR-522-3p promotes tumorigenesis in human colorectal cancer via targeting bloom syndrome protein. Oncol Res. 2018;26(7):1113–1121. doi:10.3727/096504018X15166199939341.
  • Patel SA, Vanharanta S. Epigenetic determinants of metastasis. Mol Oncol. 2017;11(1):79–96. doi:10.1016/j.molonc.2016.09.008.
  • Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9):a019505. doi:10.1101/cshperspect.a019505.
  • Rogozin IB, Pavlov YI, Goncearenco A, De S, Lada AG, Poliakov E, et al. Mutational signatures and mutable motifs in cancer genomes. Brief Bioinform. 2018;19(6):1085–1101.
  • Luo L, Gao W, Wang J, Wang D, Peng X, Jia Z, et al. Study on the mechanism of cell cycle checkpoint kinase 2 (CHEK2) gene dysfunction in chemotherapeutic drug resistance of triple negative breast cancer cells. Med Sci Monit. 2018;24:3176–3183. doi:10.12659/MSM.907256.
  • Nowsheen S, Yang ES. The intersection between DNA damage response and cell death pathways. Exp Oncol. 2012;34(3):243–254.
  • Dietlein F, Thelen L, Reinhardt HC. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30(8):326–339. doi:10.1016/j.tig.2014.06.003.
  • Arora A, Abdel-Fatah TM, Agarwal D, Doherty R, Moseley PM, Aleskandarany MA, et al. Transcriptomic and protein expression analysis reveals clinicopathological significance of Bloom’s syndrome helicase (BLM) in breast cancer. Mol Cancer Therapeut. 2015;16:239–250.
  • Qian X, Feng S, Xie D, Feng D, Jiang Y, Zhang X. RecQ helicase BLM regulates prostate cancer cell proliferation and apoptosis. Oncol Lett. 2017;14(4):4206–4212. doi:10.3892/ol.2017.6704.
  • Patel DS, Misenko SM, Her J, Bunting SF. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. J Cell Biol. 2017;216(11):3521–3534. doi:10.1083/jcb.201703144.
  • Aldubayan SH, Pyle LT, Gamulin M, Kulis T, Moore ND, Loud JT, et al. Inherited defects in checkpoint kinase 2 (CHEK2) to confer increased susceptibility to testicular germ cell tumors. J Clin Oncol. 2018;36(15_suppl):1515.
  • Siołek M, Cybulski C, Gąsior-Perczak D, Kowalik A, Kozak-Klonowska B, Kowalska A, et al. CHEK 2 mutations and the risk of papillary thyroid cancer. Int J Cancer. 2015;137(3):548–552. doi:10.1002/ijc.29426.
  • Al-Subhi N, Ali R, Abdel-Fatah T, Moseley PM, Chan SYT, Green AR, et al. Targeting ataxia telangiectasia-mutated-and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy. Breast Cancer Res Treat. 2018;169(2):277–286. doi:10.1007/s10549-018-4683-4.
  • Foote KM, Nissink JWM, McGuire T, Turner P, Guichard S, Yates JWT, et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J Med Chem. 2018;61(22):9889–9907.
  • Huang J, Luo H-L, Pan H, Qiu C, Hao T-F, Zhu Z-M. Interaction between RAD51 and MCM complex is essential for RAD51 foci forming in colon cancer HCT116 cells. Biochem Moscow. 2018;83(1):69–75. doi:10.1134/S0006297918010091.
  • McManus KJ, Barrett IJ, Nouhi Y, Hieter P. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci. 2009;106(9):3276–3281. doi:10.1073/pnas.0813414106.
  • Wang R, Li Y, Chen Y, Wang L, Wu Q, Guo Y, et al. Inhibition of RAD54B suppresses proliferation and promotes apoptosis in hepatoma cells. Oncol Rep. 2018;40(3):1233–1242. doi:10.3892/or.2018.6522.
  • Mohni KN, Kavanaugh GM, Cortez D. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res. 2014;74(10):2835–2845.
  • Ning J, Jiao Y, Xie X, Deng X, Zhang Y, Yang Y, et al. miR-138-5p modulates the expression of excision repair cross-complementing proteins ERCC1 and ERCC4, and regulates the sensitivity of gastric cancer cells to cisplatin. Oncol Rep. 2019;41(2):1131–1139. doi:10.3892/or.2018.6907.
  • Tezuka S, Ueno M, Kobayashi S, Morimoto M, Ohkawa S, Hirotani A, et al. Predictive value of ERCC1, ERCC2, ERCC4, and glutathione S-transferase Pi expression for the efficacy and safety of FOLFIRINOX in patients with unresectable pancreatic cancer. Am J Cancer Res. 2018;8(10):2096–2105.
  • Kim D, Liu Y, Oberly S, Freire R, Smolka MB. ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res. 2018;46(16):8311–8325. doi:10.1093/nar/gky625.
  • Toledo L, Neelsen KJ, Lukas J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol Cell. 2017;66(6):735–749. doi:10.1016/j.molcel.2017.05.001.
  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60(4):547–560. doi:10.1016/j.molcel.2015.10.040.
  • Benada J, Macurek L. Targeting the checkpoint to kill cancer cells. Biomolecules. 2015;5(3):1912–1937. doi:10.3390/biom5031912.
  • Krebs MG, Lopez J, El-Khoueiry A, Bang Y-J, Postel-Vinay S, Abida W, et al. Abstract CT026: phase I study of AZD6738, an inhibitor of ataxia telangiectasia Rad3-related (ATR), in combination with olaparib or durvalumab in patients (pts) with advanced solid cancers. Cancer Res. 2018;78(13):CT026. doi:10.1158/1538-7445.AM2018-CT026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.