205
Views
3
CrossRef citations to date
0
Altmetric
Review

Antidepressants Promote and Prevent Cancers

&
Pages 572-598 | Received 18 Oct 2019, Accepted 26 Aug 2020, Published online: 06 Oct 2020

References

  • Lavergne F, Jay TM. A new strategy for antidepressant prescription. Front Neurosci. 2010;4:192. doi:10.3389/fnins.2010.00192.
  • Sun X, Zhao Y, Wolf ME. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci. 2005;25(32):7342–7351. doi:10.1523/JNEUROSCI.4603-04.2005.
  • Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Brain Res Rev. 2004;47(1–3):126–144. doi:10.1016/j.brainresrev.2004.05.002.
  • Stewart CV, Plenz D. Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J Neurosci. 2006;26(31):8148–8159. doi:10.1523/JNEUROSCI.0723-06.2006.
  • Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35(12):2378–2391. doi:10.1038/npp.2010.114.
  • Eliwa H, Belzung C, Surget A. Adult hippocampal neurogenesis: is it the alpha and omega of antidepressant action? Biochem Pharmacol. 2017;141:86–99. doi:10.1016/j.bcp.2017.08.005.
  • Björkholm C, Monteggia LM. BDNF - a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–79. doi:10.1016/j.neuropharm.2015.10.034.
  • Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15(11):7539–7547. doi:10.1523/JNEUROSCI.15-11-07539.1995.
  • Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM. Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry. 2003;54(7):703–709. doi:10.1016/s0006-3223(03)00073-8.
  • Polyakova M, Schroeter ML, Elzinga BM, Holiga S, Schoenknecht P, de Kloet ER, et al. Brain-derived neurotrophic factor and antidepressive effect of electroconvulsive therapy: systematic review and meta-analyses of the preclinical and clinical literature. PLoS One. 2015;10(11):e0141564. doi:10.1371/journal.pone.0141564.
  • Zhang N, Xing M, Wang Y, Tao H, Cheng Y. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience. 2015;311:284–291. doi:10.1016/j.neuroscience.2015.10.038.
  • Hoffman JR, Ostfeld I, Kaplan Z, Zohar J, Cohen H. Exercise enhances the behavioral responses to acute stress in an animal model of PTSD. Med Sci Sports Exerc. 2015;47(10):2043–2052. doi:10.1249/MSS.0000000000000642.
  • Ieraci A, Mallei A, Musazzi L, Popoli M. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice. Hippocampus. 2015;25(11):1380–1392. doi:10.1002/hipo.22458.
  • Ji J, Ji S, Sun R, Li K, Zhang Y, Zhang L, Tian Y. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway. Biochem Biophys Res Commun. 2014;443(2):646–651. doi:10.1016/j.bbrc.2013.12.031.
  • Baj G, D'Alessandro V, Musazzi L, Mallei A, Sartori CR, Sciancalepore M, et al. Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants. Neuropsychopharmacology. 2012;37(7):1600–1611. doi:10.1038/npp.2012.5.
  • Datta S, Knapp CM, Koul-Tiwari R, Barnes A. The homeostatic regulation of REM sleep: a role for localized expression of brain-derived neurotrophic factor in the brainstem. Behav Brain Res. 2015;292:381–392. doi:10.1016/j.bbr.2015.06.038.
  • Barnes AK, Koul-Tiwari R, Garner JM, Geist PA, Datta S. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep. J Neurochem. 2017;141(1):111–123. doi:10.1111/jnc.13938.
  • Rogóz Z, Skuza G, Legutko B. Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol off J Pol Physiol Soc. 2005;56:661–671.
  • Engel D, Zomkowski ADE, Lieberknecht V, Rodrigues AL, Gabilan NH. Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res. 2013;47(6):802–808. doi:10.1016/j.jpsychires.2013.02.013.
  • Larsen MH, Hay-Schmidt A, Rønn LCB, Mikkelsen JD. Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. Eur J Pharmacol. 2008;578(2–3):114–122. doi:10.1016/j.ejphar.2007.08.050.
  • Zhang F, Shao J, Tian J, Zhong Y, Ye L, Meng X, et al. Antidepressant-like effects of LPM580153, a novel potent triple reuptake inhibitor. Sci Rep. 2016;6:24233. doi:10.1038/srep24233.
  • Kozisek ME, Middlemas D, Bylund DB. The differential regulation of BDNF and TrkB levels in juvenile rats after four days of escitalopram and desipramine treatment. Neuropharmacology. 2008;54(2):251–257. doi:10.1016/j.neuropharm.2007.08.001.
  • Sachs BD, Caron MG. Chronic fluoxetine increases extra-hippocampal neurogenesis in adult mice. Int J Neuropsychopharmacol. 2014;18. doi:10.1093/ijnp/pyu029.
  • Zhang Y, Gu F, Chen J, Dong W. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat. Brain Res. 2010;1366:141–148. doi:10.1016/j.brainres.2010.09.095.
  • Coppell AL, Pei Q, Zetterström TSC. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003;44(7):903–910. doi:10.1016/S0028-3908(03)00077-7.
  • Della FP, Abelaira HM, Réus GZ, Ribeiro KF, Antunes AR, Scaini G, et al. Tianeptine treatment induces antidepressive-like effects and alters BDNF and energy metabolism in the brain of rats. Behav Brain Res. 2012;233(2):526–535. doi:10.1016/j.bbr.2012.05.039.
  • Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29(7):419–423. doi:10.1016/j.eurpsy.2013.10.005.
  • Küppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport. 2001;12(6):1175–1179. doi:10.1097/00001756-200105080-00025.
  • Yu H, Chen Z. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011;32(1):3–11. doi:10.1038/aps.2010.184.
  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311(5762):864–868. doi:10.1126/science.1120972.
  • Jacobsen JPR, Mørk A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res. 2004;1024(1–2):183–192. doi:10.1016/j.brainres.2004.07.065.
  • Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res. 2007;85(3):525–535. doi:10.1002/jnr.21139.
  • Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res. 1997;28(2):103–110. doi:10.1016/s0168-0102(97)00030-8.
  • Rus GZ, dos Santos MAB, Abelaira HM, Ribeiro KF, Petronilho F, Vuolo F, et al. Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats. Behav Brain Res. 2013;242:40–46. doi:10.1016/j.bbr.2012.11.044.
  • Savelyev SA, Rantamäki T, Rytkönen KM, Castren E, Porkka-Heiskanen T. Sleep homeostasis and depression: studies with the rat clomipramine model of depression. Neuroscience. 2012;212:149–158. doi:10.1016/j.neuroscience.2012.03.029.
  • Kim YK, Lee HP, Won SD, Park EY, Lee HY, Lee BH, et al. Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):78–85. doi:10.1016/j.pnpbp.2006.06.024.
  • Sheldrick A, Camara S, Ilieva M, Riederer P, Michel TM. Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals - a proof of concept study. Eur Psychiatry. 2017;46:65–71. doi:10.1016/j.eurpsy.2017.06.009.
  • Koolschijn PCMP, van Haren NEM, Lensvelt-Mulders GJLM, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30(11):3719–3735. doi:10.1002/hbm.20801.
  • Stratmann M, Konrad C, Kugel H, Krug A, Schöning S, Ohrmann P, et al. Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS One. 2014;9(7):e102692. doi:10.1371/journal.pone.0102692.
  • Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48(8):766–777. doi:10.1016/s0006-3223(00)00950-1.
  • Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161(11):1957–1966. doi:10.1176/appi.ajp.161.11.1957.
  • Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–75. doi:10.1016/s0006-3223(03)00181-1.
  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109(2):143–148. doi:10.1016/S0165-1781(02)00005-7.
  • Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–1072. doi:10.1016/j.biopsych.2005.01.008.
  • Cunha ABM, Frey BN, Andreazza AC, Goi JD, Rosa AR, Gonçalves CA, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett. 2006;398(3):215–219. doi:10.1016/j.neulet.2005.12.085.
  • Zhou L, Xiong J, Lim Y, Ruan Y, Huang C, Zhu Y, et al. Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord. 2013;150(3):776–784. doi:10.1016/j.jad.2013.03.002.
  • Serra-Millàs M, López-Vílchez I, Navarro V, Galán AM, Escolar G, Penadés R, et al. Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology (Berl). 2011;216(1):1–8. doi:10.1007/s00213-011-2180-0.
  • Sagud M, Nikolac Perkovic M, Vuksan-Cusa B, Maravic A, Svob Strac D, Mihaljevic Peles A, et al. prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology (Berl). 2016;233(17):3259–3267. doi:10.1007/s00213-016-4364-0.
  • Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12(2):e0172270. doi:10.1371/journal.pone.0172270.
  • Katsuki A, Yoshimura R, Kishi T, Hori H, Umene-Nakano W, Ikenouchi-Sugita A, et al. Serum levels of brain-derived neurotrophic factor (BDNF), BDNF gene Val66Met polymorphism, or plasma catecholamine metabolites, and response to mirtazapine in Japanese patients with major depressive disorder (MDD). CNS Spectr. 2012;17(3):155–163. doi:10.1017/S109285291200051X.
  • Kallies G, Rapp MA, Fydrich T, Fehm L, Tschorn M, Terán C, et al. Serum brain-derived neurotrophic factor (BDNF) at rest and after acute aerobic exercise in major depressive disorder. Psychoneuroendocrinology. 2019;102:212–215. doi:10.1016/j.psyneuen.2018.12.015.
  • Ryan KM, Dunne R, McLoughlin DM. BDNF plasma levels and genotype in depression and the response to electroconvulsive therapy. Brain Stimul. 2018;11(5):1123–1131. doi:10.1016/j.brs.2018.05.011.
  • Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, et al. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord. 2015;186:306–311. doi:10.1016/j.jad.2015.06.033.
  • Rapinesi C, Kotzalidis GD, Curto M, Serata D, Ferri VR, Scatena P, et al. Electroconvulsive therapy improves clinical manifestations of treatment-resistant depression without changing serum BDNF levels. Psychiatry Res. 2015;227(2–3):171–178. doi:10.1016/j.psychres.2015.04.009.
  • Salehi I, Hosseini SM, Haghighi M, Jahangard L, Bajoghli H, Gerber M, et al. Electroconvulsive therapy and aerobic exercise training increased BDNF and ameliorated depressive symptoms in patients suffering from treatment-resistant major depressive disorder. J Psychiatr Res. 2014;57:117–124. doi:10.1016/j.jpsychires.2014.06.018.
  • Watanabe K, Hashimoto E, Ukai W, Ishii T, Yoshinaga T, Ono T, et al. Effect of antidepressants on brain-derived neurotrophic factor (BDNF) release from platelets in the rats. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(8):1450–1454. doi:10.1016/j.pnpbp.2010.07.036.
  • Le Nedelec M, Glue P, Winter H, Goulton C, Broughton L, Medlicott N. Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Deliv Transl Res. 2018;8(3):780–786. doi:10.1007/s13346-017-0476-2.
  • Chacón-Fernández P, Säuberli K, Colzani M, Moreau T, Ghevaert C, Barde YA. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem. 2016;291(19):9872–9881. doi:10.1074/jbc.M116.720029.
  • Sun S, Wang W, Latchman Y, Gao D, Aronow B, Reems JA. Expression of plasma membrane receptor genes during megakaryocyte development. Physiol Genomics. 2013;45(6):217–227. doi:10.1152/physiolgenomics.00056.2012.
  • Genever PG, Wilkinson DJ, Patton AJ, Peet NM, Hong Y, Mathur A, et al. Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood. 1999;93(9):2876–2883.
  • Hitchcock IS, Skerry TM, Howard MR, Genever PG. NMDA receptor-mediated regulation of human megakaryocytopoiesis. Blood. 2003;102(4):1254–1259. doi:10.1182/blood-2002-11-3553.
  • Verdi J, Mortazavi-Tabatabaei SA, Sharif S, Verdi H, Shoae-Hassani A. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells. Neural Regen Res. 2014;9(8):845–850. doi:10.4103/1673-5374.131601.
  • Chen SJ, Kao CL, Chang YL, Yen CJ, Shui JW, Chien CS, et al. Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2. Curr Neurovasc Res. 2007;4(1):19–29. doi:10.2174/156720207779940707.
  • Szpunar MJ, Burke KA, Dawes RP, Brown EB, Madden KS. The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev Res (Phila). 2013;6(12):1262–1272. doi:10.1158/1940-6207.CAPR-13-0079.
  • Winek CL, Morris EM, Wahba WW. The use of bone marrow in the study of postmortem redistribution of nortriptyline. J Anal Toxicol. 1993;17(2):93–98. doi:10.1093/jat/17.2.93.
  • Winek CL, Westwood SE, Wahba WW. Plasma versus bone marrow desipramine: a comparative study. Forensic Sci Int. 1990;48(1):49–57. doi:10.1016/0379-0738(90)90271-y.
  • Yamazaki K, Allen TD. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex”. Am J Anat. 1990;187(3):261–276. doi:10.1002/aja.1001870306.
  • Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi:10.1038/nature09262.
  • Chen S, Du C, Shen M, Zhao G, Xu Y, Yang K, et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation. Blood. 2016;127(8):1024–1035. doi:10.1182/blood-2015-07-660746.
  • Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48(1–2):42–51. doi:10.3109/07853890.2015.1131327.
  • Jhaveri DJ, Mackay EW, Hamlin AS, Marathe SV, Nandam LS, Vaidya VA, Bartlett PF. Norepinephrine directly activates adult hippocampal precursors via beta3-adrenergic receptors. J Neurosci. 2010;30(7):2795–2806. doi:10.1523/JNEUROSCI.3780-09.2010.
  • Masuda T, Nakagawa S, Boku S, Nishikawa H, Takamura N, Kato A, et al. Noradrenaline increases neural precursor cells derived from adult rat dentate gyrus through β2 receptor. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):44–51. doi:10.1016/j.pnpbp.2011.08.019.
  • Cheng YS, Liu YS, Yang M. Effect of 5-hydroxtryptamine on megakaryocytopoiesis–review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006;14:403–407.
  • Yang M, Li K, Ng PC, Chuen CKY, Lau TK, Cheng YS, et al. Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells. 2007;25(7):1800–1806. doi:10.1634/stemcells.2007-0048.
  • Schweinfurth N, Hohmann S, Deuschle M, Lederbogen F, Schloss P. Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01. Platelets. 2010;21(8):648–657. doi:10.3109/09537104.2010.513748.
  • Zhu Z, Yin J, Guan J, Hu B, Niu X, Jin D, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-dependent β-catenin/Wnt pathway activation. FEBS J. 2014;281(23):5371–5389. doi:10.1111/febs.13081.
  • Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18(9):951–975. doi:10.3727/096368909X471251.
  • Wexler EM, Geschwind DH, Palmer TD. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry. 2008;13(3):285–292. doi:10.1038/sj.mp.4002093.
  • Branchford BR. Venous thromboembolism risk with antidepressants: driven by disease or drugs? J Am Heart Assoc Cardiovasc Cerebrovasc  Dis. 2017;6(5):e006293. doi:10.1161/JAHA.117.006293.
  • Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging. 2005;26(1):115–123. doi:10.1016/j.neurobiolaging.2004.03.002.
  • Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017;469(5–6):593–610. doi:10.1007/s00424-017-1964-4.
  • Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36(2):280–286. doi:10.1016/0169-328X(95)00250-V.
  • Radka SF, Hoist PA, Fritsche M, Altar CA. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res. 1996;709(1):122–301. doi:10.1016/0006-8993(95)01321-0.
  • Stoll P, Plessow A, Bratke K, Virchow JC, Lommatzsch M. Differential effect of clopidogrel and aspirin on the release of BDNF from platelets. J Neuroimmunol. 2011;238(1–2):104–106. doi:10.1016/j.jneuroim.2011.06.015.
  • Türck P, Frizzo ME. Riluzole stimulates BDNF release from human platelets. BioMed Res Int. 2015;2015:1–6. doi:10.1155/2015/189307.
  • Tamura S, Suzuki H, Hirowatari Y, Hatase M, Nagasawa A, Matsuno K, et al. Release reaction of brain-derived neurotrophic factor (BDNF) through PAR1 activation and its two distinct pools in human platelets. Thromb Res. 2011;128(5):e55–e61. doi:10.1016/j.thromres.2011.06.002.
  • Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C. Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. Pharmacopsychiatry. 2013;46(1):29–34. doi:10.1055/s-0032-1314843.
  • Haile CN, Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Foulkes A, et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(2):331–336. doi:10.1017/S1461145713001119.
  • Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 2014;33(1):231–269. doi:10.1007/s10555-014-9498-0.
  • Kafitz KW, Rose CR, Thoenen H, Konnerth A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature. 1999;401(6756):918–921. doi:10.1038/44847.
  • Dewitt J, Ochoa V, Urschitz J, Elston M, Moisyadi S, Nishi R. Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest-derived cell line. Oncogene. 2014;33(8):977–985. doi:10.1038/onc.2013.39.
  • Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: implications in brain-related diseases. World J Biol Chem. 2014;5(4):409–428. doi:10.4331/wjbc.v5.i4.409.
  • Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am J Pathol. 1999;155(4):1183–1193. doi:10.1016/S0002-9440(10)65221-2.
  • Kajitani N, Hisaoka-Nakashima K, Morioka N, Okada-Tsuchioka M, Kaneko M, Kasai M, et al. Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: differential regulation of FGF-2 by noradrenaline. PLoS One. 2012;7(12):e51197. doi:10.1371/journal.pone.0051197.
  • Hisaoka-Nakashima K, Kajitani N, Kaneko M, Shigetou T, Kasai M, Matsumoto C, et al. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia. Brain Res. 2016;1634:57–67. doi:10.1016/j.brainres.2015.12.057.
  • Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, et al. Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol. 1999;21(4):537–546. doi:10.1165/ajrcmb.21.4.3670.
  • Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics. 2007;90(3):397–406. doi:10.1016/j.ygeno.2007.05.004.
  • Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J, et al. Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer. 2013;108(1):121–130. doi:10.1038/bjc.2012.499.
  • Akil H, Perraud A, Mélin C, Jauberteau MO, Mathonnet M. Fine-tuning roles of endogenous brain-derived neurotrophic factor, TrkB and sortilin in colorectal cancer cell survival. PLoS One. 2011;6(9):e25097. doi:10.1371/journal.pone.0025097.
  • Chen JY, Liu J, Wang RH, Peng WZ, Liu ZM, Wang XM, et al. Suppressive effect of brain derived neurotrophic factor on H2O2-induced apoptosis in human lung cancer cell YTMLC-90. Ai Zheng Aizheng Chin J Cancer. 2003;22:938–942.
  • Alonso-Alconada L, Eritja N, Muinelo-Romay L, Barbazan J, Lopez-Lopez R, Matias-Guiu X, et al. ETV5 transcription program links BDNF and promotion of EMT at invasive front of endometrial carcinomas. Carcinogenesis. 2014;35(12):2679–2686. doi:10.1093/carcin/bgu198.
  • Makino K, Kawamura K, Sato W, Kawamura N, Fujimoto T, Terada Y. Inhibition of uterine sarcoma cell growth through suppression of endogenous tyrosine kinase B signaling. PLoS One. 2012;7(7):e41049. doi:10.1371/journal.pone.0041049.
  • Ricci A, Greco S, Mariotta S, Felici L, Bronzetti E, Cavazzana A, et al. Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol. 2001;25(4):439–446. doi:10.1165/ajrcmb.25.4.4470.
  • Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–1039. doi:10.1038/nature02765.
  • Glass DJ, Nye SH, Hantzopoulos P, Macchi MJ, Squinto SP, Goldfarb M, et al. TrkB mediates BDNF/NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity NGF receptor. Cell. 1991;66(2):405–413. doi:10.1016/0092-8674(91)90629-d.
  • Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66(2):395–403. doi:10.1016/0092-8674(91)90628-c.
  • Desmet CJ, Peeper DS. The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cell Mol Life Sci. 2006;63(7–8):755–759. doi:10.1007/s00018-005-5490-8.
  • Odate S, Onishi H, Nakamura K, Kojima M, Uchiyama A, Kato M, et al. Tropomyosin-related kinase B inhibitor has potential for tumor regression and relapse prevention in pulmonary large cell neuroendocrine carcinoma. Anticancer Res. 2013;33(9):3699–3703.
  • Bao W, Qiu H, Yang T, Luo X, Zhang H, Wan X. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 2013;8(7):e70616. doi:10.1371/journal.pone.0070616.
  • Huang SM, Lin C, Lin HY, Chiu CM, Fang CW, Liao KF, et al. Brain-derived neurotrophic factor regulates cell motility in human colon cancer. Endocr Relat Cancer. 2015;22(3):455–464. doi:10.1530/ERC-15-0007.
  • Yu Y, Zhang S, Wang X, Yang Z, Ou G. Overexpression of TrkB promotes the progression of colon cancer. APMIS. 2010;118(3):188–195. doi:10.1111/j.1600-0463.2009.02577.x.
  • Lin CY, Chen HJ, Li TM, Fong YC, Liu SC, Chen PC, et al. β5 integrin up-regulation in brain-derived neurotrophic factor promotes cell motility in human chondrosarcoma. PLoS One. 2013;8(7):e67990. doi:10.1371/journal.pone.0067990.
  • Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55(8):1798–1806.
  • Hecht M, Schulte JH, Eggert A, Wilting J, Schweigerer L. The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis. 2005;26(12):2105–2115. doi:10.1093/carcin/bgi192.
  • Cimmino F, Schulte JH, Zollo M, Koster J, Versteeg R, Iolascon A, et al. Galectin-1 is a major effector of TrkB-mediated neuroblastoma aggressiveness. Oncogene. 2009;28(19):2015–2023. doi:10.1038/onc.2009.70.
  • Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010;29(14):2047–2059. doi:10.1038/onc.2009.486.
  • Zhang S, Guo D, Luo W, Zhang Q, Zhang Y, Li C, et al. TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer. 2010;10:43. doi:10.1186/1471-2407-10-43.
  • Götz R, Sendtner M. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS One. 2014;9(6):e100944. doi:10.1371/journal.pone.0100944.
  • Odate S, Nakamura K, Onishi H, Kojima M, Uchiyama A, Nakano K, et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer. 2013;79(3):205–214. doi:10.1016/j.lungcan.2012.12.004.
  • Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 2014;111(28):10299–10304. doi:10.1073/pnas.1404399111.
  • Hamel W, Westphal M, Szönyi E, Escandón E, Nikolics K. Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res. 1993;34(2):147–157. doi:10.1002/jnr.490340202.
  • Yang X, Martin TA, Jiang WG. Biological influence of brain-derived neurotrophic factor (BDNF) on colon cancer cells. Exp Ther Med. 2013;6(6):1475–1481. doi:10.3892/etm.2013.1330.
  • Ricci A, De Vitis C, Noto A, Fattore L, Mariotta S, Cherubini E, et al. TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle. 2013;12(11):1696–1703. doi:10.4161/cc.24759.
  • Aronica E, Leenstra S, Jansen GH, van Veelen CW, Yankaya B, Troost D. Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor. Acta Neuropathol. 2001;101(4):383–392. doi:10.1007/s004010000296.
  • Ai LS, Sun CY, Wang YD, Zhang L, Chu ZB, Qin Y, et al. Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo. Int J Cancer. 2013;133(5):1074–1084. doi:10.1002/ijc.28116.
  • Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA. The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res off J Am Assoc Cancer Res. 1999;5:2205–2212.
  • Montano X, Djamgoz MBA. Epidermal growth factor, neurotrophins and the metastatic cascade in prostate cancer. FEBS Lett. 2004;571(1–3):1–8. doi:10.1016/j.febslet.2004.06.088.
  • Yang ZF, Ho DW, Lau CK, Tam KH, Lam CT, Yu WC, et al. Significance of the serum brain-derived neurotrophic factor and platelets in hepatocellular carcinoma. Oncol Rep. 2006;16(6):1237–1243. doi:10.3892/or.16.6.1237.
  • Sasahira T, Ueda N, Yamamoto K, Bhawal UK, Kurihara M, Kirita T, Kuniyasu H. Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis. 2013;30(2):165–176. doi:10.1007/s10585-012-9525-x.
  • Lam CT, Yang ZF, Lau CK, Tam KH, Fan ST, Poon RTP. Brain-derived neurotrophic factor promotes tumorigenesis via induction of neovascularization: implication in hepatocellular carcinoma. Clin Cancer Res. 2011;17(10):3123–3133. doi:10.1158/1078-0432.CCR-10-2802.
  • Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, et al. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 2009;15(10):3244–3250. doi:10.1158/1078-0432.CCR-08-1815.
  • Okamura K, Harada T, Wang S, Ijichi K, Furuyama K, Koga T, et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer. 2012;78(1):100–106. doi:10.1016/j.lungcan.2012.07.011.
  • Dubanet L, Bentayeb H, Petit B, Olivrie A, Saada S, de la Cruz-Morcillo MA, et al. Anti-apoptotic role and clinical relevance of neurotrophins in diffuse large B-cell lymphomas. Br J Cancer. 2015;113(6):934–944. doi:10.1038/bjc.2015.274.
  • Nakamura Y, Suganami A, Fukuda M, Hasan MK, Yokochi T, Takatori A, et al. Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma. Cancer Med. 2014;3(1):25–35. doi:10.1002/cam4.175.
  • Steingart AB, Cotterchio M. Do antidepressants cause, promote, or inhibit cancers? J Clin Epidemiol. 1995;48(11):1407–1412. doi:10.1016/0895-4356(95)00545-5.
  • Lee HC, Chiu WC, Wang TN, Liao YT, Chien IC, Lee Y, et al. Antidepressants and colorectal cancer: a population-based nested case-control study. J Affect Disord. 2017;207:353–358. doi:10.1016/j.jad.2016.09.057.
  • Chan HL, Hsieh YH, Lin CF, Liang HY, Huang KY, Chiu WC, et al. Invasive cervical cancer and antidepressants: a nationwide population-based study. Medicine (Baltimore). 2015;94(42):e1866. doi:10.1097/MD.0000000000001866.
  • Chen VCH, Lin CF, Hsieh YH, Liang HY, Huang KY, Chiu WC, et al. Hepatocellular carcinoma and antidepressants: a nationwide population-based study. Oncotarget. 2017;8(18):30464–30470. doi:10.18632/oncotarget.12826.
  • Hsieh YH, Chiu WC, Lin CF, Chan HL, Liang HY, Lee Y, et al. Antidepressants and gastric cancer: a nationwide population-based nested case-control study. PLoS One. 2015;10(11):e0143668. doi:10.1371/journal.pone.0143668.
  • Lin CF, Chan HL, Hsieh YH, Liang HY, Chiu WC, Huang KY, et al. Endometrial cancer and antidepressants: a nationwide population-based study. Medicine (Baltimore). 2016;95(29):e4178. doi:10.1097/MD.0000000000004178.
  • Huang RY, Hsieh KP, Huang WW, Yang YH. Use of lithium and cancer risk in patients with bipolar disorder: population-based cohort study. Br J Psychiatry. 2016;209(5):393–399. doi:10.1192/bjp.bp.116.181362.
  • Mun AR, Lee SJ, Kim GB, Kang HS, Kim JS, Kim SJ. Fluoxetine-induced apoptosis in hepatocellular carcinoma cells. Anticancer Res. 2013;33(9):3691–3697.
  • Chen S, Xuan J, Wan L, Lin H, Couch L, Mei N, et al. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway. Toxicol Sci. 2014;137(2):404–415. doi:10.1093/toxsci/kft254.
  • Cordero MD, Sánchez-Alcázar JA, Bautista-Ferrufino MR, Carmona-López MI, Illanes M, Ríos MJ, et al. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs. Anticancer Drugs. 2010;21(10):932–944. doi:10.1097/CAD.0b013e32833ed5f7.
  • Bismuth-Evenzal Y, Gonopolsky Y, Gurwitz D, Iancu I, Weizman A, Rehavi M. Decreased serotonin content and reduced agonist-induced aggregation in platelets of patients chronically medicated with SSRI drugs. J Affect Disord. 2012;136(1–2):99–103. doi:10.1016/j.jad.2011.08.013.
  • Liang X, Margolis KL, Hendryx M, Reeves K, Wassertheil-Smoller S, Weitlauf J, et al. Effect of depression before breast cancer diagnosis on mortality among postmenopausal women. Cancer. 2017;123(16):3107–3115. doi:10.1002/cncr.30688.
  • Dalton SO, Johansen C, Mellemkjaer L, Sørensen HT, McLaughlin JK, Olsen J, Olsen JH. Antidepressant medications and risk for cancer. Epidemiol Camb Mass. 2000;11:171–176.
  • Haukka J, Sankila R, Klaukka T, Lonnqvist J, Niskanen L, Tanskanen A, et al. Incidence of cancer and antidepressant medication: record linkage study. Int J Cancer. 2010;126(1):285–296. doi:10.1002/ijc.24537.
  • Boursi B, Lurie I, Mamtani R, Haynes K, Yang YX. Anti-depressant therapy and cancer risk: a nested case-control study. Eur Neuropsychopharmacol. 2015;25(8):1147–1157. doi:10.1016/j.euroneuro.2015.04.010.
  • Sun Y, Vedsted P, Fenger-Grøn M, Wu CS, Bech BH, Olsen J, et al. Cancer mortality in people treated with antidepressants before cancer diagnosis: a population based cohort study. PLoS One. 2015;10(9):e0138134. doi:10.1371/journal.pone.0138134.
  • Sun Y, Vedsted P, Fenger-Grøn M, Wu CS, Bech BH, Olsen J, et al. Correction: cancer mortality in people treated with antidepressants before cancer diagnosis: a population based cohort study. PLoS One. 2016;11(5):e0155453. doi:10.1371/journal.pone.0155453.
  • Stockler MR, O'Connell R, Nowak AK, Goldstein D, Turner J, Wilcken NRC, et al. Effect of sertraline on symptoms and survival in patients with advanced cancer, but without major depression: a placebo-controlled double-blind randomised trial. Lancet Oncol. 2007;8(7):603–612. doi:10.1016/S1470-2045(07)70148-1.
  • Kubera M, Grygier B, Arteta B, Urbańska K, Basta-Kaim A, Budziszewska B, et al. Age-dependent stimulatory effect of desipramine and fluoxetine pretreatment on metastasis formation by B16F10 melanoma in male C57BL/6 mice. Pharmacol Rep. 2009;61(6):1113–1126. doi:10.1016/s1734-1140(09)70174-4.
  • Angelucci F, Croce N, Spalletta G, Dinallo V, Gravina P, Bossù P, et al. Paroxetine rapidly modulates the expression of brain-derived neurotrophic factor mRNA and protein in a human glioblastoma-astrocytoma cell line. Pharmacology. 2011;87(1–2):5–10. doi:10.1159/000322528.
  • Xiong J, Zhou L, Lim Y, Yang M, Zhu YH, Li ZW, et al. Mature BDNF promotes the growth of glioma cells in vitro. Oncol Rep. 2013;30(6):2719–2724. doi:10.3892/or.2013.2746.
  • Leblanc R, Peyruchaud O. Metastasis: new functional implications of platelets and megakaryocytes. Blood. 2016;128(1):24–31. doi:10.1182/blood-2016-01-636399.
  • Ishikawa S, Miyashita T, Inokuchi M, Hayashi H, Oyama K, Tajima H, et al. Platelets surrounding primary tumor cells are related to chemoresistance. Oncol Rep. 2016;36(2):787–794. doi:10.3892/or.2016.4898.
  • Pandey A, Sarangi S, Chien K, Sengupta P, Papa AL, Basu S, et al. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery. Nanotechnology. 2014;25(44):445101. doi:10.1088/0957-4484/25/44/445101.
  • Carr BI, Cavallini A, D'Alessandro R, Refolo MG, Lippolis C, Mazzocca A, Messa C. Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer. 2014;14:43. doi:10.1186/1471-2407-14-43.
  • Guillem-Llobat P, Dovizio M, Alberti S, Bruno A, Patrignani P. Platelets, cyclooxygenases, and colon cancer. Semin Oncol. 2014;41(3):385–396. doi:10.1053/j.seminoncol.2014.04.008.
  • Goubran HA, Burnouf T, Radosevic M, El-Ekiaby M. The platelet-cancer loop. Eur J Intern Med. 2013;24(5):393–400. doi:10.1016/j.ejim.2013.01.017.
  • Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer. 2012;130(12):2747–2760. doi:10.1002/ijc.27441.
  • Carr BI, Guerra V, De Giorgio M, Fagiuoli S, Pancoska P. Small hepatocellular carcinomas and thrombocytopenia. Oncology. 2012;83(6):331–338. doi:10.1159/000341533.
  • Carr BI, Lin CY, Lu SN. Platelet-related phenotypic patterns in hepatocellular carcinoma patients. Semin Oncol. 2014;41(3):415–421. doi:10.1053/j.seminoncol.2014.04.001.
  • Rivera F, Vega-Villegas ME, López-Brea M, Isla D, Mayorga M, Galdós P, et al. Randomized phase II study of cisplatin and 5-FU continuous infusion (PF) versus cisplatin, UFT and vinorelbine (UFTVP) as induction chemotherapy in locally advanced squamous cell head and neck cancer (LA-SCHNC. Cancer Chemother Pharmacol. 2008;62(2):253–261. doi:10.1007/s00280-007-0599-0.
  • Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136(2):462–475. doi:10.1002/ijc.28997.
  • Rothwell PM, Wilson M, Price JF, Belch JFF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet Lond Engl. 2012;379(9826):1591–1601. doi:10.1016/S0140-6736(12)60209-8.
  • Flossmann E, Rothwell PM. British doctors aspirin trial and the UK-TIA aspirin trial. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet Lond Engl. 2007;369(9573):1603–1613. doi:10.1016/S0140-6736(07)60747-8.
  • Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–527. doi:10.1016/S1470-2045(12)70112-2.
  • Choe KS, Cowan JE, Chan JM, Carroll PR, D'Amico AV, Liauw SL. Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. J Clin Oncol. 2012;30(28):3540–3544. doi:10.1200/JCO.2011.41.0308.
  • Borsig L. Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb. Res. 2010;125(Suppl 2):S66–S71. doi:10.1016/S0049-3848(10)70017-7.
  • Leader A, Zelikson-Saporta R, Pereg D, Spectre G, Rozovski U, Raanani P, et al. The effect of combined aspirin and clopidogrel treatment on cancer incidence. Am J Med. 2017;130(7):826–832. doi:10.1016/j.amjmed.2017.01.022.
  • Mitrugno A, Sylman JL, Rigg RA, Tassi Yunga S, Shatzel JJ, Williams CD, et al. Carpe low-dose aspirin: the new anti-cancer face of an old anti-platelet drug. Platelets. 2018;29(8):773–778. doi:10.1080/09537104.2017.1416076.
  • Li J, Ai Y, Wang L, Bu P, Sharkey CC, Wu Q, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials. 2016;76:52–65. doi:10.1016/j.biomaterials.2015.10.046.
  • Li N, Lu Y, Li D, Zheng X, Lian J, Li S, et al. All-trans retinoic acid suppresses the angiopoietin-Tie2 pathway and inhibits angiogenesis and metastasis in esophageal squamous cell carcinoma. PLoS One. 2017;12(4):e0174555. doi:10.1371/journal.pone.0174555.
  • Kreinin A, Lisson S, Nesher E, Schneider J, Bergman J, Farhat K, et al. Blood BDNF level is gender specific in severe depression. PLoS One. 2015;10(5):e0127643. doi:10.1371/journal.pone.0127643.
  • Alvarez A, Aleixandre M, Linares C, Masliah E, Moessler H. Apathy and APOE4 are associated with reduced BDNF levels in Alzheimer’s disease. J Alzheimers Dis. 2014;42(4):1347–1355. doi:10.3233/JAD-140849.
  • Wang Y, Liu H, Zhang BS, Soares JC, Zhang XY. Low BDNF is associated with cognitive impairments in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2016;29:66–71. doi:10.1016/j.parkreldis.2016.05.023.
  • Khalil H, Alomari MA, Khabour OF, Al-Hieshan A, Bajwa JA. Relationship of circulatory BDNF with cognitive deficits in people with Parkinson’s disease. J Neurol Sci. 2016;362:217–220. doi:10.1016/j.jns.2016.01.032.
  • Zhen YF, Zhang J, Liu XY, Fang H, Tian LB, Zhou DH, et al. Low BDNF is associated with cognitive deficits in patients with type 2 diabetes. Psychopharmacology (Berl). 2013;227(1):93–100. doi:10.1007/s00213-012-2942-3.
  • Paczkowska E, Rogińska D, Pius-Sadowska E, Jurewicz A, Piecyk K, Safranow K, et al. Evidence for proangiogenic cellular and humoral systemic response in patients with acute onset of spinal cord injury. J Spinal Cord Med. 2015;38(6):729–744. doi:10.1179/2045772314Y.0000000227.
  • Kitamura Y, Hattori S, Yoneda S, Watanabe S, Kanemoto E, Sugimoto M, et al. Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res. 2015;292:184–193. doi:10.1016/j.bbr.2015.06.007.
  • Fernandes BS, Molendijk ML, Köhler CA, Soares JC, Leite CMGS, Machado-Vieira R, et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med. 2015;13:289. doi:10.1186/s12916-015-0529-7.
  • Zhang J, Luo W, Li Q, Xu R, Wang Q, Huang Q. Peripheral brain-derived neurotrophic factor in attention-deficit/hyperactivity disorder: a comprehensive systematic review and meta-analysis. J Affect Disord. 2018;227:298–304. doi:10.1016/j.jad.2017.11.012.
  • Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1824–1828. doi:10.1016/j.pnpbp.2008.08.005.
  • Amiri A, Torabi Parizi G, Kousha M, Saadat F, Modabbernia MJ, Najafi K, et al. Changes in plasma Brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with Attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2013;47:20–24. doi:10.1016/j.pnpbp.2013.07.018.
  • Kvam S, Kleppe CL, Nordhus IH, Hovland A. Exercise as a treatment for depression: a meta-analysis. J Affect Disord. 2016;202:67–86. doi:10.1016/j.jad.2016.03.063.
  • Belvederi Murri M, Amore M, Menchetti M, Toni G, Neviani F, Cerri M, et al. Physical exercise for late-life major depression. Br J Psychiatry. 2015;207(3):235–242. doi:10.1192/bjp.bp.114.150516.
  • Neviani F, Belvederi Murri M, Mussi C, Triolo F, Toni G, Simoncini E, et al. Physical exercise for late life depression: effects on cognition and disability. Int Psychogeriatr. 2017;29(7):1105–1112. doi:10.1017/S1041610217000576.
  • Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med. 2017;22(1):27. doi:10.1186/s12199-017-0643-6.
  • Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–494. doi:10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3.
  • Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N. The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. Am J Health Promot. 2018;32(3):691–704. doi:10.1177/0890117117737409.
  • Wu Y, Luo X, Liu X, Liu D, Wang X, Guo Z, et al. Intraperitoneal administration of a novel TAT-BDNF peptide ameliorates cognitive impairments via modulating multiple pathways in two Alzheimer's rodent models. Sci Rep. 2015;5:15032. doi:10.1038/srep15032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.