261
Views
9
CrossRef citations to date
0
Altmetric
Review

Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia

, &
Pages 507-521 | Received 05 Aug 2019, Accepted 26 Aug 2020, Published online: 14 Sep 2020

References

  • Tampieri A, D’Alessandro T, Sandri M, Sprio S, Landi E, Bertinetti L, et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012;8(2):843–851. doi:10.1016/j.actbio.2011.09.032.
  • Bañobre-López M, Piñeiro-Redondo Y, De Santis R, Gloria A, Ambrosio L, Tampieri A, et al. Poly (caprolactone) based magnetic scaffolds for bone tissue engineering. J Appl Phys. 2011;109(7):07B313. doi:10.1063/1.3561149.
  • Gloria A, Russo T, D’Amora U, Zeppetelli S, D’Alessandro T, Sandri M, et al. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface. 2013;10(80):20120833. doi:10.1098/rsif.2012.0833.
  • Sharma SK, Shrivastava N, Rossi F, Tung LD, Thanh NTK. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today. 2019;29:100795. doi:10.1016/j.nantod.2019.100795.
  • Kolosnjaj-Tabi J, Marangon I, Nicolas-Boluda A, Silva AKA, Gazeau F. Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix. Pharmacol Res. 2017;126:123–137. doi:10.1016/j.phrs.2017.07.010.
  • Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle-based cancer therapeutic agents. IJERPH. 2016;13(12):1182. doi:10.3390/ijerph13121182.
  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003;100(23):13549–13554. doi:10.1073/pnas.2232479100.
  • Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 2004;3(1):33–40. doi:10.1177/153303460400300104.
  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209(2):171–176. doi:10.1016/j.canlet.2004.02.004.
  • Biosciences IN. Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck. Bethesda (MD): National Library of Medicine (US); 2000.
  • Moy AJ, Tunnell JW. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv Drug Deliv Rev. 2017;114:175–183. doi:10.1016/j.addr.2017.06.008.
  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21(7):637–647. doi:10.1080/02656730500158360.
  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–1086. doi:10.1126/science.1209038.
  • Frey B, Weiss E-M, Rubner Y, Wunderlich R, Ott OJ, Sauer R, et al. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 2012;28(6):528–542. doi:10.3109/02656736.2012.677933.
  • Gehrmann M, Marienhagen J, Eichholtz-Wirth H, Fritz E, Ellwart J, Jäättelä M, et al. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ. 2005;12(1):38–51. doi:10.1038/sj.cdd.4401510.
  • Riley RS, Day ES. Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIREs Nanomed Nanobiotechnol. 2017;9(4):e1449. doi:10.1002/wnan.1449.
  • Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7(2):169–183. doi:10.1002/smll.201000134.
  • Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2(8):1001–1014. doi:10.4155/tde.11.72.
  • Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J Biomech Eng. 2009;131(7):074001. doi:10.1115/1.3156800.
  • Chen C-L, Kuo L-R, Lee S-Y, Hwu Y-K, Chou S-W, Chen C-C, et al. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128–1134. doi:10.1016/j.biomaterials.2012.10.044.
  • Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869–10939. doi:10.1021/cr400532z.
  • Li Y, Lu W, Huang Q, Huang M, Li C, Chen W, et al. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine. 2010;5(8):1161–1171. doi:10.2217/nnm.10.85.
  • Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11(6):2560–2566. doi:10.1021/nl201400z.
  • Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine. 2014;10(3):503–514. doi:10.1016/j.nano.2013.09.011.
  • Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D, et al. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces. 2014;6(11):8080–8089. doi:10.1021/am500302t.
  • Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10(9):3318–3323. doi:10.1021/nl100996u.
  • Nafiujjaman M, Nurunnabi M. Graphene and 2D materials for phototherapy. Biomedical applications of graphene and 2D nanomaterials. New York (NY): Elsevier; 2019. p. 105–117
  • Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H, et al. Single‐wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg Med. 2010;42(9):798–808. doi:10.1002/lsm.20968.
  • Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: a mini-review. Front Chem Sci Eng. 2019;13(2):310–323. doi:10.1007/s11705-018-1750-7.
  • Cantu T, Walsh K, Pattani VP, Moy A, Tunnell JW, Irvin J, et al. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation. IJN. 2017;12:615–632. doi:10.2147/IJN.S116583.
  • Chen P, Ma Y, Zheng Z, Wu C, Wang Y, Liang G, et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat Commun. 2019;10(1):1192. doi:10.1038/s41467-019-09226-6.
  • Manikandan M, Hasan N, Wu H-F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. 2013;34(23):5833–5842. doi:10.1016/j.biomaterials.2013.03.077.
  • Depciuch J, Stec M, Klebowski B, Baran J, Parlinska-Wojtan M. Platinum-gold nanoraspberries as effective photosensitizer in anticancer photothermal therapy. J Nanobiotechnol. 2019;17(1):107. doi:10.1186/s12951-019-0539-2.
  • Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(3):428–445. doi:10.1002/wnan.1322.
  • Zhu J, Wang Y, Huo D, Ding Q, Lu Z, Hu Y, et al. Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. Mater Sci Eng C Mater Biol Appl. 2019;105:110023. doi:10.1016/j.msec.2019.110023.
  • Pattani VP, Tunnell JW. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types. Lasers Surg Med. 2012;44(8):675–684. doi:10.1002/lsm.22072.
  • Ma K, Li Y, Wang Z, Chen Y, Zhang X, Chen C, et al. Core-shell gold Nanorod@Layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy. ACS Appl Mater Interfaces. 2019;11(33):29630–29640. doi:10.1021/acsami.9b10373.
  • Chauhan DS, Reddy BPK, Mishra SK, Prasad R, Dhanka M, Vats M, et al. A comprehensive evaluation of degradable and cost effective plasmonic nanoshells for localized photothermolysis of cancer cells. Langmuir. 2019;35(24):7805–7815. doi:10.1021/acs.langmuir.8b03460.
  • Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013;7(3):2068–2077. doi:10.1021/nn304332s.
  • Jenkins SV, Nedosekin DA, Shaulis BJ, Wang T, Jamshidi-Parsian A, Pollock ED, et al. Enhanced photothermal treatment efficacy and normal tissue protection via vascular targeted gold nanocages. Nanotheranostics. 2019;3(2):145–155. doi:10.7150/ntno.32395.
  • Chen H, Zhang X, Dai S, Ma Y, Cui S, Achilefu S, et al. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics. 2013;3(9):633–649. doi:10.7150/thno.6630.
  • Huang X, Shang W, Deng H, Zhou Y, Cao F, Fang C, et al. Clothing spiny nanoprobes against the mononuclear phagocyte system clearance in vivo: photoacoustic diagnosis and photothermal treatment of early stage liver cancer with erythrocyte membrane-camouflaged gold nanostars. Appl Mater Today. 2020;18:100484. doi:10.1016/j.apmt.2019.100484.
  • Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–711. doi:10.1021/nl050127s.
  • Goodrich GP, Bao L, Gill-Sharp K, Sang KL, Wang J, Payne JD, et al. Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt. 2010;15(1):018001. doi:10.1117/1.3290817.
  • Wang X, Wang C, Wang X, Wang Y, Zhang Q, Cheng Y, et al. A polydopamine nanoparticle-knotted poly (ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater. 2017;29(3):1370–1376. doi:10.1021/acs.chemmater.6b05192.
  • Zou L, Wang H, He B, Zeng L, Tan T, Cao H, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics. 2016;6(6):762–772. doi:10.7150/thno.14988.
  • Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15(3):876–886. doi:10.1158/1078-0432.CCR-08-1480.
  • Espinosa A, Silva AKA, Sánchez-Iglesias A, Grzelczak M, Péchoux C, Desboeufs K, et al. Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: toward a plasmonic thermal fingerprint in tumoral environment. Adv Healthc Mater. 2016;5(9):1040–1048. doi:10.1002/adhm.201501035.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–374. doi:10.1016/S0304-8853(02)00706-0.
  • Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces. 2019;174:42–55. doi:10.1016/j.colsurfb.2018.10.051.
  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB, et al. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596–606. doi:10.1097/00000658-195710000-00007.
  • Anselmo A, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29. doi:10.1002/btm2.10003.
  • Fan C, Gao W, Chen Z, Fan H, Li M, Deng F, et al. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm. 2011;404(1–2):180–190. doi:10.1016/j.ijpharm.2010.10.038.
  • Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomed. 2010;5:385–399. doi:10.2147/ijn.s10458.
  • Le Renard P-E, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, et al. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials. 2010;31(4):691–705. doi:10.1016/j.biomaterials.2009.09.091.
  • Ota S, Yamazaki N, Tomitaka A, Yamada T, Takemura Y. Hyperthermia using antibody-conjugated magnetic nanoparticles and its enhanced effect with cryptotanshinone. Nanomaterials. 2014;4(2):319–330. doi:10.3390/nano4020319.
  • Shah SA, Majeed A, Rashid K, Awan S-U. PEG-coated folic acid-modified superparamagnetic MnFe2O4 nanoparticles for hyperthermia therapy and drug delivery. Mater Chem Phys. 2013;138(2–3):703–708. doi:10.1016/j.matchemphys.2012.12.044.
  • Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1(1):5358. doi:10.3402/nano.v1i0.5358.
  • Kashevsky BE, Kashevsky SB, Terpinskaya TI, Ulashchik VS. Magnetic hyperthermia with hard-magnetic nanoparticles: in vivo feasibility of clinically relevant chemically enhanced tumor ablation. J Magn Magn Mater. 2019;475:216–222. doi:10.1016/j.jmmm.2018.11.083.
  • Li J, Yao H, Lei Y, Huang W, Wang Z. Numerical simulation of magnetic fluid hyperthermia based on multiphysics coupling and recommendation on preferable treatment conditions. Curr Appl Phys. 2019;19(9):1031–1039. doi:10.1016/j.cap.2019.06.003.
  • Oliveira TR, Stauffer PR, Lee C-T, Landon CD, Etienne W, Ashcraft KA, et al. Magnetic fluid hyperthermia for bladder cancer: a preclinical dosimetry study. Int J Hyperthermia. 2013;29(8):835–844. doi:10.3109/02656736.2013.834384.
  • Zadnik PL, Molina CA, Sarabia-Estrada R, Groves ML, Wabler M, Mihalic J, et al. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease. J Neurosurg: Spine. 2014;20(6):740–750.
  • Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17(1):66. doi:10.1186/s13058-015-0576-1.
  • Yang R, An LY, Miao QF, Li FM, Han Y, Wang HX, et al. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes. Oncotarget. 2016;7(24):35894–35916. doi:10.18632/oncotarget.9116.
  • Mérida F, Rinaldi C, Juan EJ, Torres-Lugo M. In vitro ultrasonic potentiation of 2-phenylethynesulfonamide/magnetic fluid hyperthermia combination treatments for ovarian cancer. Int J Nanomed. 2020;15:419–432. doi:10.2147/IJN.S217870.
  • Morady F. Radio-frequency ablation as treatment for cardiac arrhythmias. N Engl J Med. 1999;340(7):534–544. doi:10.1056/NEJM199902183400707.
  • Curley SA. Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol. 2003;10(4):338–347. doi:10.1245/aso.2003.07.017.
  • Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, et al. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep. 2015;4(1):7034. doi:10.1038/srep07034.
  • Gongalsky M, Gvindzhiliia G, Tamarov K, Shalygina O, Pavlikov A, Solovyev V, et al. Radiofrequency hyperthermia of cancer cells enhanced by silicic acid ions released during the biodegradation of porous silicon nanowires. ACS Omega. 2019;4(6):10662–10669. doi:10.1021/acsomega.9b01030.
  • Curley SA, Cherukuri P, Briggs K, Patra CR, Upton M, Dolson E, et al. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol. 2008;7(4): 313–326.
  • Gannon CJ, Patra C, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol. 2008;6(1):2. doi:10.1186/1477-3155-6-2.
  • Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer: Interdiscip Int J Am Cancer Soc. 2007;110(12):2654–2665. doi:10.1002/cncr.23155.
  • Raoof M, Curley SA. Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma. Int J Hepatol. 2011;2011:676957. doi:10.4061/2011/676957.
  • Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN, et al. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res. 2010;16(23):5712–5721. doi:10.1158/1078-0432.CCR-10-2055.
  • Brandi G, Rizzo A, Dall’Olio FG, Felicani C, Ercolani G, Cescon M, et al. Percutaneous radiofrequency ablation in intrahepatic cholangiocarcinoma: a retrospective single-center experience. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology. Int J Hyperthermia. 2020;37(1):479–485. doi:10.1080/02656736.2020.1763484.
  • Bornstein BA, Zouranjian PS, Hansen JL, Fraser SM, Gelwan LA, Teicher BA, et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int J Radiat Oncol Biol Phys. 1993;25(1):79–85. doi:10.1016/0360-3016(93)90148-O.
  • Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia. 1993;9(1):51–68. doi:10.3109/02656739309061478.
  • Shibata M, Ogawa T, Kawashita M. Synthesis of iron nitride nanoparticles from magnetite nanoparticles of different sizes for application to magnetic hyperthermia. Ceram Int. 2019;45(17):23707–23714. doi:10.1016/j.ceramint.2019.08.086.
  • Esmaeili E, Chaydareh RG, Farsad S, Rounaghi SA, Mollayi N. Enhanced heat transfer properties of magnetite nanofluids due to Neel and Brownian relaxation mechanisms. Chem Eng Commun. 2016;203(9):1157–1164. doi:10.1080/00986445.2016.1150842.
  • Hergt R, Dutz S, Zeisberger M. Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology. 2010;21(1):015706. doi:10.1088/0957-4484/21/1/015706.
  • Jeyadevan B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J Ceram Soc Jpn. 2010;118(1378):391–401. doi:10.2109/jcersj2.118.391.
  • Zhang Q, Castellanos-Rubio I, Munshi R, Orue I, Pelaz B, Gries KI, et al. Model driven optimization of magnetic anisotropy of exchange-coupled core-shell ferrite nanoparticles for maximal hysteretic loss. Chem Mater. 2015;27(21):7380–7387. doi:10.1021/acs.chemmater.5b03261.
  • Chen R, Christiansen MG, Anikeeva P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano. 2013;7(10):8990–9000. doi:10.1021/nn4035266.
  • Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn. 1998;34(5):3745–3754. doi:10.1109/20.718537.
  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–2635. doi:10.1021/ja067457e.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36(13):R167–R181. doi:10.1088/0022-3727/36/13/201.
  • Zhao D-L, Wang X-X, Zeng X-W, Xia Q-S, Tang J-T. Preparation and inductive heating property of Fe3O4–chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd. 2009;477(1–2):739–743. doi:10.1016/j.jallcom.2008.10.104.
  • Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311(1):187–192. doi:10.1016/j.jmmm.2006.10.1156.
  • Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Hoopes PJ, et al. The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J Phys D: Appl Phys. 2008;41(13):134020. doi:10.1088/0022-3727/41/13/134020.
  • Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321(10):1493–1496. doi:10.1016/j.jmmm.2009.02.070.
  • Kawai N, Futakuchi M, Yoshida T, Ito A, Sato S, Naiki T, et al. Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate. 2008;68(7):784–792. doi:10.1002/pros.20740.
  • Bae S, Lee SW, Takemura Y, Yamashita E, Kunisaki J, Zurn S, et al. Dependence of frequency and magnetic field on self-heating characteristics of NiFe $_2 $O $_4 $nanoparticles for hyperthermia. IEEE Trans Magn. 2006;42(10):3566–3568. doi:10.1109/TMAG.2006.879617.
  • Kim D-H, Lee S-H, Kim K-N, Kim K-M, Shim I-B, Lee Y-K, et al. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application. J Magn Magn Mater. 2005;293(1):320–327. doi:10.1016/j.jmmm.2005.02.077.
  • Wijaya A, Brown KA, Alper JD, Hamad-Schifferli K. Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater. 2007;309(1):15–19. doi:10.1016/j.jmmm.2006.04.014.
  • Nojima K, Ge S, Katayama Y, Ueno S, Iramina K. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule. J Appl Phys. 2010;107(9): 09B320. doi:10.1063/1.3357987.
  • Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1(5):482–501. doi:10.1002/smll.200500006.
  • Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles. J Magn Magn Mater. 2007;311(1):282–287. doi:10.1016/j.jmmm.2006.10.1181.
  • Deger S, Boehmer D, Türk I, Roigas J, Budach V, Loening SA, et al. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol. 2002;42(2):147–153. doi:10.1016/s0302-2838(02)00277-4.
  • Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA, Chaudhary P, et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys. 2009;105(7):07B324. doi:10.1063/1.3076043.
  • Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, et al. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 2013;7(4):3287–3296. doi:10.1021/nn305991e.
  • Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, et al. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine. 2016;11(14):1889–1910. doi:10.2217/nnm-2016-5001.
  • Piñeiro Y, Vargas Z, Rivas J, López-Quintela MA. Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur J Inorg Chem. 2015;2015(27):4495–4509. doi:10.1002/ejic.201500598.
  • Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia–description of a method and a review of clinical applications. Rep Pract Oncol Radiother. 2007;12(5):267–275. doi:10.1016/S1507-1367(10)60065-X.
  • Legge CJ, Colley HE, Lawson MA, Rawlings AE. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J Oral Pathol Med. 2019;48(9):803–809. doi:10.1111/jop.12921.
  • Roohi R, Emdad H, Jafarpur K, Mahmoudi MR. Determination of magnetic nanoparticles injection characteristics for optimal hyperthermia treatment of an arbitrary cancerous cells distribution. J Test Eval. 2020;48(2):20170677. doi:10.1520/JTE20170677.
  • Schier P, Barton C, Spassov S, Johansson C. European research on magnetic nanoparticles for biomedical applications: standardisation aspects. Polish Conference on Biocybernetics and Biomedical Engineering; 2019.
  • Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release. 2016;235:205–221. doi:10.1016/j.jconrel.2016.05.062.
  • Ruggiero MR, Crich SG, Sieni E, Sgarbossa P, Forzan M, Cavallari E, et al. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles. Nanotechnology. 2016;27(28):285104. doi:10.1088/0957-4484/27/28/285104.
  • Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015;95:40–49. doi:10.1016/j.addr.2015.09.009.
  • Zhang H, Liu XL, Zhang YF, Gao F, Li GL, He Y, et al. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci. 2018;61(4):400–414. doi:10.1007/s11427-017-9271-1.
  • Andrä W, Nowak H. Magnetism in medicine: a handbook. 2nd, Completely Revised and Enlarged Edition. New York (NY): Wiley; 2006.
  • Hoffman-Amtenbrink M, Von Rechenberg B, Hofmann H. Superparamagnetic nanoparticles for biomedical applications. J Mag Mag Mater. 2009;293:483–496.
  • Agiotis L, Theodorakos I, Samothrakitis S, Papazoglou S, Zergioti I, Raptis YS, et al. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J Magn Magn Mater. 2016;401:956–964. doi:10.1016/j.jmmm.2015.10.111.
  • Kang Y-M. High saturation magnetization in La–Ce–Zn–doped M-type Sr-hexaferrites. Ceram Int. 2015;41(3):4354–4359. doi:10.1016/j.ceramint.2014.11.125.
  • Anandha Babu G, Ravi G, Hayakawa Y, Kumaresavanji M. Synthesis and calcinations effects on size analysis of Co3O4 nanospheres and their superparamagnetic behaviors. J Magn Magn Mater. 2015;375:184–193. doi:10.1016/j.jmmm.2014.09.062.
  • Bini M, Tondo C, Capsoni D, Mozzati MC, Albini B, Galinetto P, et al. Superparamagnetic ZnFe2O4 nanoparticles: the effect of Ca and Gd doping. Mater Chem Phys. 2018;204:72–82. doi:10.1016/j.matchemphys.2017.10.033.
  • Vijayaprasath G, Murugan R, Mahalingam T, Hayakawa Y, Ravi G. Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Ceram Int. 2015;41(9):10607–10615. doi:10.1016/j.ceramint.2015.04.160.
  • Dehaini D, Fang RH, Luk BT, Pang Z, Hu C-MJ, Kroll AV, et al. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8(30):14411–14419. doi:10.1039/c6nr04091h.
  • Sugden WW, Meissner R, Aegerter-Wilmsen T, Tsaryk R, Leonard EV, Bussmann J, et al. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol. 2017;19(6):653–665. doi:10.1038/ncb3528.
  • Kopanja L, Milosevic I, Panjan M, Damnjanovic V, Tadic M. Sol–gel combustion synthesis, particle shape analysis and magnetic properties of hematite (α-Fe2O3) nanoparticles embedded in an amorphous silica matrix. Appl Surf Sci. 2016;362:380–386. doi:10.1016/j.apsusc.2015.11.238.
  • Obaidat IM, Issa B, Haik Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials. 2015;5(1):63–89. doi:10.3390/nano5010063.
  • Rivas J, Bañobre-López M, Piñeiro-Redondo Y, Rivas B, López-Quintela MA. Magnetic nanoparticles for application in cancer therapy. J Magn Magn Mater. 2012;324(21):3499–3502. doi:10.1016/j.jmmm.2012.02.075.
  • Li H-J, Du J-Z, Du X-J, Xu C-F, Sun C-Y, Wang H-X, et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci USA. 2016;113(15):4164–4169. doi:10.1073/pnas.1522080113.
  • Li H-J, Du J-Z, Liu J, Du X-J, Shen S, Zhu Y-H, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10(7):6753–6761. doi:10.1021/acsnano.6b02326.
  • Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-engineering rationales of gold nanoparticles for cancer theranostics. Adv Mater Weinheim. 2016;28(39):8567–8585. doi:10.1002/adma.201602080.
  • Schladt TD, Schneider K, Schild H, Tremel W. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans. 2011;40(24):6315–6343. doi:10.1039/c0dt00689k.
  • Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38(9):2532–2542. doi:10.1039/b815548h.
  • Lattuada M, Hatton TA. Functionalization of monodisperse magnetic nanoparticles. Langmuir. 2007;23(4):2158–2168. doi:10.1021/la062092x.
  • Lu AH, Salabas EL, Schüth F. Magnetische nanopartikel: synthese, stabilisierung, funktionalisierung und anwendung. Angew Chem. 2007;119(8):1242–1266. doi:10.1002/ange.200602866.
  • Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS, et al. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2017;81:597–606. doi:10.1016/j.msec.2017.08.017.
  • Narayanan KB, Han SS. Icosahedral plant viral nanoparticles – bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interface Sci. 2017;248:1–19. doi:10.1016/j.cis.2017.08.005.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578. doi:10.1016/j.msec.2015.11.067.
  • Yang Y, Yang X, Yang Y, Yuan Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon. 2018;129:380–395. doi:10.1016/j.carbon.2017.12.013.
  • Gibson TJ, Smyth P, McDaid WJ, Lavery D, Thom J, Cotton G, et al. Single-domain antibody-functionalized pH-responsive amphiphilic block copolymer nanoparticles for epidermal growth factor receptor targeted cancer therapy. ACS Macro Lett. 2018;7(8):1010–1015. doi:10.1021/acsmacrolett.8b00461.
  • Park K, Park J, Lee H, Choi J, Yu W-J, Lee J, et al. Toxicity and tissue distribution of cerium oxide nanoparticles in rats by two different routes: single intravenous injection and single oral administration. Arch Pharm Res. 2018;41(11):1108–1116. doi:10.1007/s12272-018-1074-7.
  • Leal MP, Muñoz-Hernández C, Berry CC, García-Martín ML. In vivo pharmacokinetics of T 2 contrast agents based on iron oxide nanoparticles: optimization of blood circulation times. RSC Adv. 2015;5(94):76883–76891. doi:10.1039/C5RA15680G.
  • Elbialy NS, Aboushoushah SF, Alshammari WW. Long-term biodistribution and toxicity of curcumin capped iron oxide nanoparticles after single-dose administration in mice. Life Sci. 2019;230:76–83. doi:10.1016/j.lfs.2019.05.048.
  • Salgueiriño‐Maceira V, Correa‐Duarte MA. Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater. 2007;19(23):4131–4144.
  • Ognjanović M, Radović M, Mirković M, Prijović Ž, Puerto Morales MD, Čeh M, et al. 99mTc-, 90Y-, and 177Lu-labeled iron oxide nanoflowers designed for potential use in dual magnetic hyperthermia/radionuclide cancer therapy and diagnosis. ACS Appl Mater Interfaces. 2019;11(44):41109–41117. doi:10.1021/acsami.9b16428.
  • Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, et al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Biosci Bioeng. 2005;100(1):112–115. doi:10.1263/jbb.100.112.
  • Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T, et al. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol. 2004;2(1):3. doi:10.1186/1477-044X-2-3.
  • Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res. 1998;89(4):463–469. doi:10.1111/j.1349-7006.1998.tb00586.x.
  • Le BIAO, Shinkai M, Kitade T, Honda H, Yoshida JUN, Wakabayashi T, et al. Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J Chem Eng Japan. 2001;34(1):66–72. doi:10.1252/jcej.34.66.
  • Ito A, Nakahara YOKO, Fujioka M, Kobayashi T, Takeda K, Nakashima I, et al. Complete regression of hereditary melanoma in a mouse model by repeated hyperthermia using magnetite cationic liposomes. Jpn J Hyperthermic Oncol. 2005;21(3):139–149. doi:10.3191/thermalmedicine.21.139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.