190
Views
0
CrossRef citations to date
0
Altmetric
Review

Dietary Phytochemicals as a Potential Source for Targeting Cancer Stem Cells

, , , &
Pages 349-368 | Received 22 Apr 2020, Accepted 20 Feb 2021, Published online: 10 Mar 2021

References

  • Sivalingam KS, Paramasivan P, Weng CF, Viswanadha V. Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. J Cell Biochem. 2017;118(9):2865–2876. doi:10.1002/jcb.25937.
  • Zhou J, Li P, Xue X, He S, Kuang Y, Zhao H, et al. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicol Lett. 2013;222(2):139–145. doi:10.1016/j.toxlet.2013.07.022.
  • Oh J, Hlatky L, Jeong Y-S, Kim D. Therapeutic effectiveness of anticancer phytochemicals on cancer stem cells. Toxins. 2016;8(7):199. doi:10.3390/toxins8070199.
  • Kuşoğlu A, Avcı ÇB. Cancer stem cells: a brief review of current status. Gene. 2019;681:80–85.
  • Koury J, Zhong L, Hao J. Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017;2017:1–10. doi:10.1155/2017/2925869.
  • Yang Y, Li X, Wang T, Guo Q, Xi T, Zheng L. Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol. 2020;13(1):1–18. doi:10.1186/s13045-020-00901-6.
  • Matsui WH. Cancer stem cell signaling pathways. Medicine. 2016;95(1 Suppl 1):S8–S19.
  • Cho Y, Kim YK. Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol. 2020;10:764. doi:10.3389/fonc.2020.00764.
  • Selvi SK, Vinoth A, Varadharajan T, Weng CF, Padma VV. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food Chem Toxicol. 2017;103:28–40. doi:10.1016/j.fct.2017.02.020.
  • Scarpa E-S, Ninfali P. Phytochemicals as innovative therapeutic tools against cancer stem cells. Int J Mol Sci. 2015;16(7):15727–15742. doi:10.3390/ijms160715727.
  • Kumar G, Farooqui M, Rao CV. Role of dietary cancer-preventive phytochemicals in pancreatic cancer stem cells. Curr Pharmacol Rep. 2018;4(4):326–335. doi:10.1007/s40495-018-0145-2.
  • Israel BB, Tilghman SL, Parker-Lemieux K, Payton‑Stewart F. Phytochemicals: current strategies for treating breast cancer. Oncol Lett. 2018;15(5):7471–7478. doi:10.3892/ol.2018.8304.
  • Tanveer S, Fathi E, Guy F. Towards new anticancer strategies by targeting cancer stem cells with phytochemical compounds. Cancer Stem Cells-The Cutting Edge: IntechOpen; 2011.
  • Asokan SM, Mariappan R, Muthusamy S, Velmurugan BK. Pharmacological benefits of neferine - A comprehensive review. Life Sci. 2018;199:60–70. doi:10.1016/j.lfs.2018.02.032.
  • Hewlings S, Kalman D. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92. doi:10.3390/foods6100092.
  • Rayburn ER, Ezell SJ, Zhang R. Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol. 2009;1(1):29–43. doi:10.4255/mcpharmacol.09.05.
  • Stingl J, Caldas C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7(10):791–799. doi:10.1038/nrc2212.
  • Takebe N, Ivy SP. Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res. 2010;16(12):3106–3112. doi:10.1158/1078-0432.CCR-09-2934.
  • O’Brien CA, Kreso A, Jamieson CH. Cancer stem cells and self-renewal. Clin Cancer Res. 2010;16(12):3113–3120. doi:10.1158/1078-0432.CCR-09-2824.
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–111. doi:10.1038/35102167.
  • Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–1313. doi:10.1158/0008-5472.CAN-08-2741.
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–737. doi:10.1038/nm0797-730.
  • Barabé F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316(5824):600–604. doi:10.1126/science.1139851.
  • Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17(24):3029–3035. doi:10.1101/gad.1143403.
  • Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10(4):257–268. doi:10.1016/j.ccr.2006.08.020.
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi:10.1007/s00401-007-0243-4.
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi:10.1056/NEJMra0708126.
  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA A Cancer J Clin. 2020;70(3):145–164.
  • Kim B, Jung N, Lee S, Sohng JK, Jung HJ. Apigenin inhibits cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-Met signaling. Phytother Res. 2016;30(11):1833–1840. doi:10.1002/ptr.5689.
  • Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–1948. doi:10.1056/NEJMra1001389.
  • Ravi M, Tentu S, Baskar G, Prasad SR, Raghavan S, Jayaprakash P, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer. 2015;15:768. doi:10.1186/s12885-015-1784-x.
  • Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29(6):783–803. doi:10.1016/j.ccell.2016.05.005.
  • Park JH, Shin JE, Park HW. The role of hippo pathway in cancer stem cell biology. Mol Cells. 2018;41(2):83–92. doi:10.14348/molcells.2018.2242.
  • Li Y-W, Xu J, Zhu G-Y, Huang Z-J, Lu Y, Li X-Q, et al. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018;4:105. doi:10.1038/s41420-018-0124-8.
  • Hassanipour-Azgomi S, Mohammadian-Hafshejani A, Ghoncheh M, Towhidi F, Jamehshorani S, Salehiniya H. Incidence and mortality of prostate cancer and their relationship with the Human Development Index worldwide. Prostate Int. 2016;4(3):118–124. doi:10.1016/j.prnil.2016.07.001.
  • Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother. 2017;88:210–217. doi:10.1016/j.biopha.2017.01.056.
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–1154. doi:10.1056/NEJMra0707975.
  • Eskander A, Goldstein DP, Irish JC. Health services research and regionalization of Care-from policy to practice: the Ontario experience in head and neck cancer. Curr Oncol Rep. 2016;18(3):19. doi:10.1007/s11912-016-0500-6.
  • Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol. 2017;74:69–74. doi:10.1016/j.archoralbio.2016.11.010.
  • Lieben L. Keeping breast cancer in check. Nat Rev Cancer. 2017;17(8):455. doi:10.1038/nrc.2017.55.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi:10.1038/nrc3239.
  • Coombs MRP, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 2016;380(2):424–433. doi:10.1016/j.canlet.2016.06.023.
  • Yano S, Umeda D, Maeda N, Fujimura Y, Yamada K, Tachibana H. Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice. J Agric Food Chem. 2006;54(14):5203–5207. doi:10.1021/jf0607361.
  • Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, Andersen DK, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712. doi:10.1097/MPA.0000000000000368.
  • Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int J Mol Sci. 2017;18(7):1338. doi:10.3390/ijms18071338.
  • Li P, Tian W, Ma X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer. 2014;13:138. doi:10.1186/1476-4598-13-138.
  • Xu Q, Ma J, Lei J, Duan W, Sheng L, Chen X, et al. Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway. Biomed Res Int. 2014;2014:546353. doi:10.1155/2014/546353.
  • Chin Y-W, Jung H-A, Chai H, Keller WJ, Kinghorn AD. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry. 2008;69(3):754–758. doi:10.1016/j.phytochem.2007.09.023.
  • Jittiporn K, Suwanpradid J, Patel C, Rojas M, Thirawarapan S, Moongkarndi P, et al. Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin. Microvasc Res. 2014;93:72–79. doi:10.1016/j.mvr.2014.03.005.
  • Lei J, Huo X, Duan W, Xu Q, Li R, Ma J, et al. α-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett. 2014;347(1):129–138. doi:10.1016/j.canlet.2014.02.003.
  • Ma Y, Yu W, Shrivastava A, Srivastava RK, Shankar S. Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin: molecular mechanisms involving Sonic hedgehog and Nanog. J Cell Mol Med. 2019;23(4):2719–2730. doi:10.1111/jcmm.14178.
  • Morgan R, Mortensson E, Williams A. Targeting LGR5 in colorectal cancer: therapeutic gold or too plastic? Br J Cancer. 2018;118(11):1410–1418. doi:10.1038/s41416-018-0118-6.
  • Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011:1–11. doi:10.1155/2011/396076.
  • Stillwell AP, Buettner PG, Siu SK, Stitz RW, Stevenson AR, Ho Y-H. Predictors of postoperative mortality, morbidity, and long-term survival after palliative resection in patients with colorectal cancer. Dis Colon Rectum. 2011;54(5):535–544. doi:10.1007/DCR.0b013e3182083d9d.
  • Jo M, Kwon JH, Joo Y-H, Kim S-E, Jung S-A, Seo S-Y, et al. Sa1203-inhibitory effect of cancer stem cells by α-Mangostin in colorectal cancer. Gastroenterology. 2018;154(6):S-276. doi:10.1016/S0016-5085(18)31284-8.
  • Zhang K-j, Gu Q-l, Ming YK, Wang X-j, X J. Anticarcinogenic effects of α-mangostin: a review. Planta Med. 2017;83(3-04):188–202. doi:10.1055/s-0042-119651.
  • Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res. 2010;12(Suppl 2):S2.
  • Milne RL, Osorio A, y Cajal TR, Vega A, Llort G, De La Hoya M, et al. The average cumulative risks of breast and ovarian cancer for carriers of mutations in BRCA1 and BRCA2 attending genetic counseling units in Spain. Clin Cancer Res. 2008;14(9):2861–2869. doi:10.1158/1078-0432.CCR-07-4436.
  • Somasundaram V, Hemalatha SK, Pal K, Sinha S, Nair AS, Mukhopadhyay D, et al. Selective mode of action of plumbagin through BRCA1 deficient breast cancer stem cells. BMC Cancer. 2016;16:336. doi:10.1186/s12885-016-2372-4.
  • Reshma RS, Sreelatha KH, Somasundaram V, Satheesh Kumar S, Nadhan R, Nair RS, Srinivas P. Plumbagin, a naphthaquinone derivative induces apoptosis in BRCA 1/2 defective castrate resistant prostate cancer cells as well as prostate cancer stem-like cells. Pharmacol Res. 2016;105:134–145. doi:10.1016/j.phrs.2016.01.012.
  • Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic acid phenethyl ester: a review of its antioxidant activity, protective effects against ischemia-reperfusion injury and drug adverse reactions. Crit Rev Food Sci Nutr. 2016;56(13):2183–90P38. doi:10.1080/10408398.2013.821967.
  • Kanimozhi G, Prasad N. Anticancer effect of caffeic acid on human cervical cancer cells. Coffee in health and disease prevention. Amsterdam: Elsevier; 2015. pp. 655–661.
  • Touaibia M, Jean-Francois J, Doiron J. Caffeic Acid, a versatile pharmacophore: an overview. Mini Rev Med Chem. 2011;11(8):695–713. doi:10.2174/138955711796268750.
  • Omene CO, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest New Drugs. 2012;30(4):1279–1288. doi:10.1007/s10637-011-9667-8.
  • Li Y, Jiang F, Chen L, Yang Y, Cao S, Ye Y, et al. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio. 2015;5:466–475. doi:10.1016/j.fob.2015.05.009.
  • Yang Y, Li Y, Wang K, Wang Y, Yin W, Li L. P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS One. 2013;8(3):e58915. doi:10.1371/journal.pone.0058915.
  • El-Khattouti A, Sheehan NT, Monico J, Drummond HA, Haikel Y, Brodell RT, et al. CD133+ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357(1):83–104. doi:10.1016/j.canlet.2014.10.043.
  • Kilani-Jaziri S, Mokdad-Bzeouich I, Krifa M, Nasr N, Ghedira K, Chekir-Ghedira L. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study. Drug Chem Toxicol. 2017;40(4):416–424. doi:10.1080/01480545.2016.1252919.
  • Jahnke MN, Hwang S, Griffith JL, Shwayder T. Cantharidin for treatment of facial molluscum contagiosum: a retrospective review. J Am Acad Dermatol. 2018;78(1):198–200. doi:10.1016/j.jaad.2017.08.044.
  • Whitman DW, Andrés MF, Martínez-Díaz RA, Ibáñez-Escribano A, Olmeda AS, González-Coloma A. Antiparasitic Properties of Cantharidin and the Blister Beetle Berberomeloe majalis (Coleoptera: Meloidae). Toxins. 2019;11:234. doi:10.3390/toxins11040234.
  • Moed L, Shwayder TA, Chang MW. Cantharidin revisited: a blistering defense of an ancient medicine. Arch Dermatol. 2001;137(10):1357–1360. doi:10.1001/archderm.137.10.1357.
  • Pajovic B, Radosavljevic M, Radunovic M, Radojevic N, Bjelogrlic B. Arthropods and their products as aphrodisiacs—review of literature. Eur Rev Med Pharmacol Sci. 2012;16(4):539–547.
  • James PJ, Thorpe N, Thorpe I. Ancient inventions. New York: Random House Digital, Inc.; 1995.
  • Le A-P, Zhang L-L, Liu W, Shi Y-F. Cantharidin inhibits cell proliferation and induces apoptosis through G2/M phase cell cycle arrest in hepatocellular carcinoma stem cells. Oncol Rep. 2016;35(5):2970–2976. doi:10.3892/or.2016.4684.
  • Wang W-J, Wu M-Y, Shen M, Zhi Q, Liu Z-Y, Gong F-R, et al. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the β-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol. 2015;47(5):1912–1922. doi:10.3892/ijo.2015.3156.
  • Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, et al. Structural insight into substrate preference for TET-mediated oxidation. Nature. 2015;527(7576):118–122. doi:10.1038/nature15713.
  • Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell. 2013;155(7):1545–1555. doi:10.1016/j.cell.2013.11.020.
  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–1133. doi:10.1038/nature09303.
  • Tabasum S, Singh RP. Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem Biol Interact. 2019;303:14–21. doi:10.1016/j.cbi.2019.02.020.
  • Song B, Guan S, Lu J, Chen Z, Huang G, Li G, et al. Suppressive effects of fisetin on mice T lymphocytes in vitro and in vivo. J Surg Res. 2013;185(1):399–409. doi:10.1016/j.jss.2013.05.093.
  • Wang N, Wang Z, Peng C, You J, Shen J, Han S, et al. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis. 2014;35(11):2544–2554. doi:10.1093/carcin/bgu187.
  • Wang N, Wang Z, Wang Y, Xie X, Shen J, Peng C, et al. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation. Oncotarget. 2015;6(12):9854–9876. doi:10.18632/oncotarget.3396.
  • Hu F-W, Yu C-C, Hsieh P-L, Liao Y-W, Lu M-Y, Chu P-M. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget. 2017;8(55):93912–93923. doi:10.18632/oncotarget.21338.
  • Lin Y, Sun H, Dang Y, Li Z. Isoliquiritigenin inhibits the proliferation and induces the differentiation of human glioma stem cells. Oncol Rep. 2018;39(2):687–694. doi:10.3892/or.2017.6154.
  • Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Semin Cancer Biol. 2016;40-41:192–208. doi:10.1016/j.semcancer.2016.09.001.
  • Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26(2):93–103. doi:10.1002/biof.5520260201.
  • Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y, et al. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell Biochem. 2018;119(5):4134–4141. doi:10.1002/jcb.26613.
  • Kim S-H, Kaschula CH, Priedigkeit N, Lee AV, Singh SV. Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. J Biol Chem. 2016;291(26):13495–13508. doi:10.1074/jbc.M116.715219.
  • Malki A, El-Saadani M, Sultan AS. Garlic constituent diallyl trisulfide induced apoptosis in MCF7 human breast cancer cells. Cancer Bio Ther. 2009;8(22):2174–2184. doi:10.4161/cbt.8.22.9882.
  • Zhang Q, Li X-T, Chen Y, Chen J-Q, Zhu J-Y, Meng Y, et al. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother Pharmacol. 2018;81(6):969–977. doi:10.1007/s00280-018-3565-0.
  • Jung Y, Park H, Zhao H-Y, Jeon R, Ryu J-H, Kim W-Y. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent. Mol Cells. 2014;37(7):547–553. doi:10.14348/molcells.2014.0158.
  • Lin S-Z, Wei W-T, Chen H, Chen K-J, Tong H-F, Wang Z-H, et al. Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PLoS One. 2012;7(8):e42146. doi:10.1371/journal.pone.0042146.
  • Masaldan S, Iyer VV. Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions. J Appl Toxicol. 2014;34(1):95–104. doi:10.1002/jat.2838.
  • Huang P-H, Huang C-Y, Chen M-C, Lee Y-T, Yue C-H, Wang H-Y, et al. Emodin and aloe-emodin suppress breast cancer cell proliferation through ERα inhibition. Evid Based Complement Alternat Med. 2013;2013:376123. doi:10.1155/2013/376123.
  • Xue H, Chen Y, Cai X, Zhao L, He A, Guo K, et al. The combined effect of survivin-targeted shRNA and emodin on the proliferation and invasion of ovarian cancer cells. Anti-Cancer Drugs. 2013;24(9):937–944. doi:10.1097/CAD.0b013e328364efe0.
  • Xie M-J, Ma Y-H, Miao L, Wang Y, Wang H-Z, Xing Y-Y, et al. Emodin-provoked oxidative stress induces apoptosis in human colon cancer HCT116 cells through a p53-mitochondrial apoptotic pathway. Asian Pac J Cancer Prev. 2014;15(13):5201–5205. doi:10.7314/apjcp.2014.15.13.5201.
  • Sun Y, Wang X, Zhou Q, Lu Y, Zhang H, Chen Q, et al. Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol Rep. 2015;33(1):338–346. doi:10.3892/or.2014.3585.
  • Zu C, Zhang M, Xue H, Cai X, Zhao L, He A, et al. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes. Oncol Lett. 2015;10(5):2919–2924. doi:10.3892/ol.2015.3646.
  • Chen H, Hsieh W, Chang W, Chung J. Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem Toxicol. 2004;42(8):1251–1257. doi:10.1016/j.fct.2004.03.002.
  • Jiang J, Zhou N, Ying P, Zhang T, Liang R, Jiang X. Emodin promotes apoptosis of human endometrial cancer through regulating the MAPK and PI3K/AKT pathways. Open Life Sci. 2019;13(1):489–496. doi:10.1515/biol-2018-0058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.