428
Views
12
CrossRef citations to date
0
Altmetric
Review

Mechanisms and Molecular Targets of Artemisinin in Cancer Treatment

, &
Pages 675-684 | Received 28 Jun 2020, Accepted 06 Jul 2021, Published online: 26 Jul 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA A Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.21590.
  • Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019; 309:108720. doi:10.1016/j.cbi.2019.06.033.
  • Luo Y, Sun X, Huang L, Yan J, Yu B-Y, Tian J. Artemisinin-based smart nanomedicines with self-supply of ferrous ion to enhance oxidative stress for specific and efficient cancer treatment. ACS Appl Mater Interfaces. 2019;11(33):29490–7. doi:10.1021/acsami.9b07390.
  • Fabbri C, Kasper S, Zohar J, Souery D, Montgomery S, Albani D, et al. Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;104:110050. doi:10.1016/j.pnpbp.2020.110050.
  • Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34(1):1–10. doi:10.1186/s13046-015-0221-y.
  • Saraei P, Asadi I, Kakar MA, Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag Res. 2019;11:3295–313. doi:10.2147/CMAR.S200059.
  • Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 2018;37(1):173. doi:10.1186/s13046-018-0835-y.
  • Dong LH, Cheng S, Zheng Z, Wang L, Shen Y, Shen ZX, et al. Histone deacetylase inhibitor potentiated the ability of MTOR inhibitor to induce autophagic cell death in Burkitt leukemia/lymphoma. J Hematol Oncol. 2013;6(1):53. doi:10.1186/1756-8722-6-53.
  • Faiva E, Hashim HT, Ramadhan MA, Musa SK, Bchara J, Tuama YD, et al. Drug supply shortage in Nigeria during COVID 19: efforts and challenges. J Pharm Policy and Pract. 2021;14(1):17. doi:10.1186/s40545-021-00302-1.
  • Yang Y-M, Chen L-N, Qu S-Q, Deng S-Q, Liu H, Wang X, et al. [Potential therapies for COVID-19 cardiovascular complications using artemisinin and its derivatives intervene based on its cardiovascular protection]. Zhongguo Zhong Yao Za Zhi. 2020;45(24):6053–64. doi:10.19540/j.cnki.cjcmm.20200828.601.
  • Sehailia M, Chemat S. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. J Biomol Struc Dyn. 2020;11: 1–11.
  • Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, et al. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol. 2021;37(1):8–11. doi:10.1016/j.pt.2020.10.003.
  • Grazzia N, Boaventura S, Garcia VL, Gadelha FR, Miguel DC. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitol Res. 2021;120(2):705–13. doi:10.1007/s00436-020-07019-1.
  • Cui H, Chen X, Bai M, Han D, Lin L, Dong M. Multipathway antibacterial mechanism of a nanoparticle-supported artemisinin promoted by nitrogen plasma treatment. ACS Appl Mater Interfaces. 2019;11(50):47299–310. doi:10.1021/acsami.9b15124.
  • Oiknine-Djian E, Bar-On S, Laskov I, Lantsberg D, Haynes RK, Panet A, et al. Artemisone demonstrates synergistic antiviral activity in combination with approved and experimental drugs active against human cytomegalovirus. Antiviral Res. 2019; 172:104639. doi:10.1016/j.antiviral.2019.104639.
  • Kim S-K, Choe J-Y, Park K-Y. Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7. Biochem Biophys Res Commun. 2019;517(2):338–45. doi:10.1016/j.bbrc.2019.07.087.
  • Charlie-Silva I, Fraceto LF, de Melo NFS. Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches. Artif Cells Nanomed Biotechnol. 2018;46(Sup 3):S611–S620.
  • Elisei LMS, Moraes TR, Malta IH, Charlie-Silva I, Sousa IMO, Veras FP, Foglio MA, et al. Antinociception induced by artemisinin nanocapsule in a model of postoperative pain via spinal TLR4 inhibition. Inflammopharmacology. 2020;28(6):1537–1551.
  • Rai SK, Apoorva, Rai KK, et al. New perspectives of the artemisia annua bioactive compounds as an affordable cure in treatment of malaria and cancer. Natural bioactive compounds: technological advancements 2021;299–315.
  • Li Z, Wu X, Wang W, Gai C, Zhang W, Li W, et al. Fe(II) and tannic acid-cloaked MOF as carrier of artemisinin for supply of ferrous ions to enhance treatment of triple-negative breast cancer. Nanoscale Res Lett. 2021;16(1):37. doi:10.1186/s11671-021-03497-z.
  • Yameogo JBG, et al. Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic gamma-cyclodextrin nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;106:6.
  • Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer. 2017; 17(1):858. doi:10.1186/s12885-017-3863-7.
  • J Dong, Chen Y, Yang W, et al. Antitumor and anti-angiogenic effects of artemisinin on breast tumor xenografts in nude mice. Research in Veterinary Science. 2020;129:66–69.
  • Botta L, et al. Artemisinin derivatives with antimelanoma activity show inhibitory effect against Human DNA topoisomerase 1. ACS Med Chem Lett. 2020;11(5):1035–1040.
  • B YZA, et al. Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers. Euro J Med Chem. 2020;211:113000.
  • Synthesis of tamoxifen‐artemisinin and estrogen‐artemisinin hybrids highly potent against breast and prostate cancer. J Chem Med Chem. 2020;15(15):1473–1479.
  • Tong Y, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 2016;7(21):31413–31428.
  • Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 2016;381(1):165–75. doi:10.1016/j.canlet.2016.07.033.
  • Chen J, Zhang L, Hao M. Effect of artemisinin on proliferation and apoptosis-related protein expression in vivo and in vitro. Saudi J Biol Sci. 2018;25(7):1488–1493.
  • Huang Z, Huang X, Jiang D, Zhang Y, Huang B, Luo G. Dihydroartemisinin inhibits cell proliferation by induced G1 arrest and apoptosis in human nasopharyngealcarcinoma cells. J Cancer Res Ther. 2016; 12(1):244–7. doi:10.4103/0973-1482.151855.
  • Bicheng Z, et al. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol Lett. 2018;15:7531–7536.
  • Li B, Bu S, Sun J, Guo Y, Lai D. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim Biophys Sin. 2018;50(12):1227–35. doi:10.1093/abbs/gmy125.
  • Ma Q, Liao H, Xu L, et al. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chinese Medicine. 2020;15(1):115–132.
  • Jianguang  , et al. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Chin Med. 2016;15:37.
  • Hu X, et al. Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol. 2021;4(1):72.
  • Malla RR, Kamal MAJCMC. ROS-responsive nanomedicine: towards targeting the breast tumor microenvironment. Curr Med Chem. 2021;6:59.
  • Bassiouni W, Ali MAM, Schulz RJTFJ. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021:15:701.
  • Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/BAI1 signaling pathway. Angiogenesis. 2020;23(3):325–12. doi:10.1007/s10456-020-09707-z.
  • Li L, Wu J, Weng S, Yang L, Wang H, Xu Y, et al. Fourier transform infrared spectroscopy monitoring of dihydroartemisinin-induced growth inhibition in ovarian cancer cells and normal ovarian surface epithelial cells. CMAR. 2020;12:653–61. doi:10.2147/CMAR.S240285.
  • Liang R, Chen W, Chen X-Y, Fan H-N, Zhang J, Zhu J-S. Dihydroartemisinin inhibits the tumorigenesis and invasion of gastric cancer by regulating STAT1/KDR/MMP9 and P53/BCL2L1/CASP3/7 pathways. Pathol Res Pract. 2021;218:153318. doi:10.1016/j.prp.2020.153318.
  • Chen R, et al. Dihydroartemisinin prevents progression and metastasis of head and neck squamous cell carcinoma by inhibiting polarization of macrophages in tumor microenvironment. Onco Targets Ther. 2020;13:3375–3387.
  • Yao Y, et al. Correction to: Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res. 2019;38(1):451.
  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. doi:10.1016/j.cell.2017.09.021.
  • Wan J, et al. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol. 2019;4(2):svn-2018-000205.
  • B YJHA, et al. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241:119911.
  • Eling N, et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2(5):517–532.
  • A HNF, et al. Dihydroartemisinin inhibits the growth and invasion of gastric cancer cells by regulating cyclin D1-CDK4-Rb signaling. Pathol Res Pract. 216(2):152795.
  • Mancias JD, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 2015;4:e10308.
  • Yoshida GJJJoHO. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017;10:67.
  • Levy JMM, Towers CG, Thorburn AJNRC. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–542.
  • Chen X, He L-Y, Lai S, He Y. Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy. Oncol Lett. 2020;20(4) :1. doi:10.3892/ol.2020.11955.
  • Wu X, Liu Y, Zhang E, Chen J, Huang X, Yan H, et al. Dihydroartemisinin modulates apoptosis and autophagy in multiple myeloma through the P38/MAPK and Wnt/β -catenin signaling pathways. Oxid Med Cell Longev. 2020; 2020(4):6096312–6096391. doi:10.1155/2020/6096391.
  • Jia G, Kong R, Ma Z-B, Han B, Wang Y-W, Pan S-H, et al. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J Exp Clin Cancer Res. 2014;33(1):8. doi:10.1186/1756-9966-33-8.
  • Qian Z, et al. Autophagy plays a protective role in Mn-induced toxicity in PC12 cells. Toxicology. 2018; 394:45–53.
  • Yanhua M, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.
  • Minghui G, et al. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–1032.
  • Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin - ScienceDirect. Free Radic Biol Med. 2019;131:356–369. doi:10.1016/j.freeradbiomed.2018.12.011.
  • Olsman M, et al. Focused ultrasound and microbubble treatment increases delivery of transferrin receptor-targeting liposomes to the brain. Ultrasound Med Biol 2021;47(5):1343–1355.
  • Vico GD, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas. Vet Med Sci. 2020;6(3):272–276.
  • Zhang H, et al. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J Drug Target. 2015;23(6):552–567.
  • Leto I, Coronnello M, Righeschi C, Bergonzi MC, Mini E, Bilia AR. Enhanced efficacy of artemisinin loaded in transferrin‐conjugated liposomes versus stealth liposomes against HCT‐8 colon cancer cells. Chem Med Chem. 2016;11(16):1745–1751. doi:10.1002/cmdc.201500586.
  • Emami J, et al. Targeted nanostructured lipid carrier for brain delivery of artemisinin: design, preparation, characterization, optimization and cell toxicity. J Pharm Pharm Sci. 2018;21(1s):225s–241s.
  • Liu K, Dai L, Li C, Liu J, Wang L, Lei J. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate. Sci Rep. 2016; 6:29461. doi:10.1038/srep29461.
  • Xueqin S, et al. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst. 2002;94(8):585–591.
  • B MAAA, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020;255:117481.
  • Jean S, Kiger AAJJoCS. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci. 2014; =127(Pt 5):923–928. doi:10.1242/jcs.093773.
  • Park  , et al. Pomolic acid suppresses HIF1 alpha/VEGF-mediated angiogenesis by targeting p38-MAPK and mTOR signaling cascades. Phytomedicine. 2016;23(14):1716–1726.
  • Marquard FE, Jücker M. Pharmacology, PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol. 2020;172:113729. doi:10.1016/j.bcp.2019.113729.
  • Jensen K. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med. 2019;244(8):621–629.
  • Artesunate induces apoptosis via a ROS-independent and Bax-mediated intrinsic pathway in HepG2 cells. J Exp Cell Res. 2015;336(2):308–317.
  • Wu R, Gao Y, Wu J, Wang C, Yang L. Semi-synthetic product dihydroartemisinin inhibited fibronectin-1 and integrin-β1 and interfered with the migration of HCCLM6 cells via PI3K-AKT pathway. Biotechnol Lett. 2020;42(6):917–926. doi:10.1007/s10529-020-02839-8.
  • Zhang P, Luo H-S, Li M, Tan S-Y. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2. Onco Targets Ther. 2015;8(default):845–854. doi:10.2147/OTT.S81041.
  • Feng X, Li L, Jiang H, Jiang K, Jin Y, Zheng J. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun. 2014;444(3):376–381. doi:10.1016/j.bbrc.2014.01.053.
  • Wang H, Chen Y, Han J, Meng Q, Xi Q, Wu G, et al. DCAF4L2 promotes colorectal cancer invasion and metastasis via mediating degradation of NFκb negative regulator PPM1B. Am J Transl Res. 2016;8(2):405–418.
  • Lv X, et al. SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling. J Cell Mol Med. 2020;24:10714–10729.
  • Tai D-I, Tsai S-L, Chang Y-H, Huang S-N, Chen T-C, Chang KSS, et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer. 2000;89(11):2274–2281. doi:10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2.
  • Su T, Li F, Guan J, Liu L, Huang P, Wang Y, et al. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. Phytomedicine. 2019;63:152968. doi:10.1016/j.phymed.2019.152968.
  • Jiang J, Geng G, Yu X, Liu H, Gao J, An H, et al. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget. 2016;7(52):87271–87283. doi:10.18632/oncotarget.13536.
  • Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, et al. Pancreatic cancer-derived exosomes cause paraneoplastic β-cell dysfunction. Clin Cancer Res. 2015;21(7):1722–1733. doi:10.1158/1078-0432.CCR-14-2022.
  • Yu L, Chen JF, Shuai X, Xu Y, Ding Y, Zhang J, et al. Artesunate protects pancreatic beta cells against cytokine-induced damage via SIRT1 inhibiting NF-κB activation . J Endocrinol Invest. 2016;39(1):83–91. doi:10.1007/s40618-015-0328-1.
  • Dong F, Zhou X, Li C, Yan S, Deng X, Cao Z, et al. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol Ther. 2014; 15(11):1479–1488. doi:10.4161/15384047.2014.955728.
  • Bastian  , et al. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12:86.
  • Michl  , et al. Overcoming immune evasion in pancreatic cancer: the combination matters. Gut. 2018;67(6):997–999.
  • Nuclear factor kappa B role in inflammation associated gastrointestinal malignancie. World J Gastroenterol. 2015;(11):3174–3183.
  • Wakefield LM, Hill CSJNRC. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer. 2013; 13(5):328–41. doi:10.1038/nrc3500.
  • Wan RJ, Li YHJMMR. MicroRNA-146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model. Mol Med Rep. 2018;17(3):4759–4766.
  • Cao Y, Feng Y-H, Gao L-W, Li X-Y, Jin Q-X, Wang Y-Y, et al. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo. Int Immunopharmacol. 2019;70:110–116. doi:10.1016/j.intimp.2019.01.041.
  • Li Y, Zhou X, Liu J, Gao N, Yang R, Wang Q, et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci. 2020; 248:117454. doi:10.1016/j.lfs.2020.117454.
  • B CZa, et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020; 62:166–181.
  • Yoshida GJ, et al. Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci. 2020;20(9):2256.
  • Yoshida GJJJoE. Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39(1):112.
  • Charles J, et al. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419–435.
  • Yao Y, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J Exp Clin Cancer Res. 2018;37(1):282.
  • Zhong Z, Virshup DMJMP. Wnt signaling and drug resistance in cancer. Mol Pharmacol. 2019;97(2):72–89.
  • El-Sahli S, et al. Wnt signaling in cancer metabolism and immunity. Cancers. 2019;11(7):904.
  • Harb J, Lin PJ, Hao JJCOR. Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep. 2019; 21(2):12.
  • Zhong G, Liang R, Yao J, Li J, Jiang T, Liu J, et al. Artemisinin ameliorates osteoarthritis by inhibiting the Wnt/β-catenin signaling pathway. Cell Physiol Biochem. 2018;51(6):2575–2590. doi:10.1159/000495926.
  • Lorini L, Grisanti S, Ambrosini R, Cosentini D, Laganà M, Grazioli L, et al. Antineoplastic activity of artemisinin in adrenocortical carcinoma. Endocrine. 2019; 66(2):425–427. doi:10.1007/s12020-019-02077-7.
  • Hui H-y, Wu N, Wu M, Liu Y, Xiao S-x, Zhang M-f. Dihydroartemisinin suppresses growth of squamous cell carcinoma A431 cells by targeting the Wnt/β-catenin pathway. Anticancer Drugs. 2016; 27(2):99–105. doi:10.1097/CAD.0000000000000307.
  • Liu Y, Wang W, Xu J, Li L, Dong Q, Shi Q, et al. Dihydroartemisinin inhibits tumor growth of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Oncol Rep. 2013; 30(4):1723–1730. doi:10.3892/or.2013.2658.
  • Li X, et al. The application of exosomal MicroRNAs in the treatment of pancreatic cancer and its research progress. Pancreas. 2021;50(1):12–16.
  • Ren P, Gong F, Zhang Y, Jiang J, Zhang H. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN. Tumor Biol. 2016;37(3):3215–3225. doi:10.1007/s13277-015-4150-3.
  • Li Y, Wang Y, Kong R, Xue D, Pan S, Chen H, et al. Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA–mRNA regulatory network. Oncotarget. 2016;7(38):62460–62473. doi:10.18632/oncotarget.11517.
  • Haijun  , et al. Anti-cancer activity of DHA on gastric cancer—an in vitro and in vivo study. Tumour Biol. 2013;34(6):3791–800.
  • Shao Y-Y, Zhang T-L, Wu L-X, Zou H-C, Li S, Huang J, et al. AKT axis, miR-21, and RECK play pivotal roles in dihydroartemisinin killing malignant glioma cells. IJMS. 2017;18(2):350. doi:10.3390/ijms18020350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.