72
Views
0
CrossRef citations to date
0
Altmetric
Articles

Immunohistochemical Analysis of Lung Adenocarcinoma in Russian Mayak Nuclear Workers

, , , , , & show all
Pages 686-698 | Received 28 Dec 2022, Accepted 22 May 2023, Published online: 09 Jun 2023

References

  • Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85(1):8. doi:10.5334/aogh.2419.
  • UNSCEAR. Sources, effects and risks of ionizing radiation, UNSCEAR 2019 report, Annex A: Evaluation of selected health effects and inference of risk due to radiation exposure. New York (NY): United Nations; 2020. 174.
  • Cahoon EK, Preston DL, Pierce DA, Grant E, Brenner AV, Mabuchi K, et al. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat Res. 2017;187(5):538–548. doi:10.1667/RR14583.1.
  • Semenova Y, Pivina L, Zhunussov Y, Zhanaspayev M, Chirumbolo S, Muzdubayeva Z, Bjørklund G. Radiation-related health hazards to uranium miners. Environ Sci Pollut Res Int. 2020;27(28):34808–34822. doi:10.1007/s11356-020-09590-7.
  • Tirmarche M. Cancer risk following alpha-emitter exposure. Ann Icrp. 2018;47(3–4):115–125. doi:10.1177/0146645318756247.
  • Grellier J, Atkinson W, Berard P, Bingham D, Birchall A, Blanchardon E, et al. Risk of lung cancer mortality in nuclear workers from internal exposure to alpha particle-emitting radionuclides. Epidemiology. 2017;28(5):675–684. doi:10.1097/EDE.0000000000000684.
  • Gillies M, Kuznetsova I, Sokolnikov M, Haylock R, O'Hagan J, Tsareva Y, Labutina E. Lung cancer risk from plutonium: a pooled analysis of the Mayak and Sellafield worker cohorts. Radiat Res. 2017;188(6):645–660. doi:10.1667/RR14719.1.
  • Stram DO, Sokolnikov M, Napier BA, Vostrotin VV, Efimov A, Preston DL. Lung cancer in the Mayak workers cohort: risk estimation and uncertainty analysis. Radiat Res. 2021;195(4):334–346. doi:10.1667/RADE-20-00094.1.
  • Boice JD Jr, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, et al. Mortality among workers at the Los Alamos National Laboratory, 1943–2017. Int J Radiat Biol. 2022;98(4):722–749. doi:10.1080/09553002.2021.1917784.
  • Clement CH, Timarche M, Harrison JD, Laurier D, Paquet F, Blanchardon E, et al. Lung cancer risk from radon and progeny and statement on radon. Ann Icrp. 2010;40(1):1–64. doi:10.1016/j.icrp.2011.08.011.
  • Tirmarche M, Apostoaei I, Blanchardon E, Ellis ED, Gilbert E, Harrison JD, et al. ICRP publication 150: cancer risk from exposure to plutonium and uranium. Ann Icrp. 2021;50(4):1–143. doi:10.1177/01466453211028020.
  • UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, Sixty-ninth session (9–13 May 2022). General Assembly, Official Records, Seventy-seventh session, Supplement No.46. New York: United Nations, 2022. p. 8.
  • UNSCEAR. Sources, effects and risks of ionizing radiation, UNSCEAR 2020/2021 Report, Volume III, Annex C: biological mechanisms relevant for the inference of cancer risks from low-dose and low-dose-rate radiation. New York: United Nations; 2021. p. 244.
  • Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson C-M, et al. Keeping the ICRP recommendations fit for purpose. J Radiol Prot. 2021;41(4):1390–1409. doi:10.1088/1361-6498/ac1611.
  • Laurier D, Rühm W, Paquet F, Applegate K, Cool D, Clement C. Areas of research to support the system of radiological protection. Radiat Environ Biophys. 2021;60(4):519–530. doi:10.1007/s00411-021-00947-1.
  • Kruglov A. The history of the Soviet atomic industry. London (UK): Taylor & Francis; 2002. p. 288.
  • Azizova T, Moseeva M, Grigoryeva E, Zhuntova G, Bannikova M, Sychugov G, Kazachkov E. Registry of plutonium-induced lung fibrosis in a Russian nuclear worker cohort. Health Phys. 2020;118(2):185–192. doi:10.1097/HP.0000000000001131.
  • Claycamp HG, Okladnikova ND, Azizova TV, Belyaeva ZD, Boecker BB, Pesternikova VS, et al. Deterministic effects from occupational radiation exposures in a cohort of Mayak PA workers: data base description. Health Phys. 2000;79(1):48–54. doi:10.1097/00004032-200007000-00009.
  • Azizova TV, Zhuntova GV, Haylock R, Moseeva MB, Grigoryeva ES, Bannikova MV, et al. Chronic bronchitis incidence in the extended cohort of Mayak workers first employed during 1948–1982. Occup Environ Med. 2017;74(2):105–113. doi:10.1136/oemed-2015-103283.
  • Labutina EV, Kuznetsova IS, Hunter N, Harrison J, Koshurnikova NA. Radiation risk of malignant neoplasms in organs of main deposition for plutonium in the cohort of Mayak workers with regard to histological types. Health Phys. 2013;105(2):165–176. doi:10.1097/HP.0b013e31828f57df.
  • Loffredo C, Goerlitz D, Sokolova S, Leondaridis L, Zakharova M, Revina V, Kirillova E. The Russian human radiobiological tissue repository: a unique resource for studies of plutonium-exposed workers. Radiat Prot Dosimetry. 2017;173(1–3):10–15. doi:10.1093/rpd/ncw303.
  • Azizova TV, Day RD, Wald N, Muirhead CR, O'Hagan JA, Sumina MV, et al. The “clinic” medical-dosimetric database of Mayak production association workers: structure, characteristics and prospects of utilization. Health Phys. 2008;94(5):449–458. doi:10.1097/01.HP.0000300757.00912.a2.
  • Fountos BN. The department of energy’s Russian health studies program. Radiat Prot Dosimetry. 2017;176(1–2):3–5. doi:10.1093/rpd/ncw110.
  • Napier BA. The Mayak worker dosimetry system (MWDS-2013): an introduction to the documentation. Radiat Prot Dosimetry. 2017;176(1–2):6–9. doi:10.1093/rpd/ncx020.
  • Brierley JD, Gospodarowicz MK, Wittekind C, editors. TNM classification of malignant tumours. 8th ed. Hoboken (NJ): John Wiley & Sons, Inc.; 2017.
  • Vasilenko EK. Verification if individual doses from external radiation exposure to workers of PA Mayak (methods and results). Med Radiol Radiat Saf. 2001;46(6):37–57.
  • Azizova TV, Bannikova MV, Briks KV, Grigoryeva ES, Hamada N. Incidence risks for subtypes of heart diseases in a Russian cohort of Mayak production association nuclear workers. Radiat Environ Biophys. 2023;62(1):51–71. doi:10.1007/s0041-022-01005-0.
  • Sychugov G, Azizova T, Osovets S, Kazachkov E, Revina V, Grigoryeva E. Morphological features of pulmonary fibrosis in workers occupationally exposed to alpha radiation. Int J Radiat Biol. 2020;96(4):448–460. doi:10.1080/09553002.2020.1721601.
  • Allen DC, Cameron RI. Histopathology specimens: clinical, pathological and laboratory aspects. 2nd ed. Berlin (Germany): Springer; 2013. p. 544.
  • Suvarna KS, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques. 8th ed. Amsterdam (Netherlands): Elsevier Health Sciences; 2018. p. 672.
  • Travis WD, Brambilla E, Burke A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon (France): International Agency for Research on Cancer; 2015. p. 412.
  • ICRP. Human respiratory tract model for radiological protection. A report of a task group of the international commission on radiological protection. Ann ICRP. 1994;24:1–482.
  • Gilhodes J, Jule Y, Kreuz S, Stierstorfer B, Stiller D, Wollin L. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLOS One. 2017;12(1):e0170561. doi:10.1371/journal.pone.0170561.
  • Zar JH. Biostatistical analysis. New Jersey: Prentice Hall; 1999. p. 663.
  • ICRP. ICRP Publication 130: occupational intakes of radionuclides: part 1. Ann Icrp. 2015;44:1–188. doi:10.1177/0146645315577539.
  • ICRP. ICRP publication 103: The 2007 recommendations of the international commission on radiological protection. Ann ICRP. 2007;37:1–332. doi:10.1016/j.icrp.2007.10.003.
  • Harrison JD, Muirhead CR. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation. Int J Radiat Biol. 2003;79(1):1–13. doi:10.1080/0955300021000038671.
  • Xue D, Zuo K, Li X, Zhang T, Chen H, Cheng Y, Chen Y. Expression and prognostic significance of livin, caspase-3, and ki-67 in the progression of human ampullary carcinoma. Appl Immunohistochem Mol Morphol. 2013;21(6):525–531. doi:10.1097/PAI.0b013e31827da412.
  • Jafari N, Zargar SJ, Yassa N, Delnavazi MR. Induction of apoptosis and cell cycle arrest by dorema glabrum root extracts in a gastric adenocarcinoma (AGS) cell line. Asian Pac J Cancer Prev. 2016;17(12):5189–5193. doi:10.22034/APJCP.2016.17.12.5189.
  • Tsoukalas N, Aravantinou-Fatorou E, Tolia M, Giaginis C, Galanopoulos M, Kiakou M, et al. Epithelial-mesenchymal transition in non small-cell lung cancer. Anticancer Res. 2017;37(4):1773–1778. doi:10.21873/anticanres.11510.
  • Jin Q, Lin C, Zhu X, Cao Y, Guo C, Wang L. (125)I seeds irradiation inhibits tumor growth and induces apoptosis by Ki-67, P21, survivin, livin and caspase-9 expression in lung carcinoma xenografts. Radiat Oncol. 2020;15(1):238. doi:10.1186/s13014-020-01682-5.
  • Rajan V, Pandey BN. Cytoproliferative effect of low dose alpha radiation in human lung cancer cells is associated with connexin 43, caveolin-1, and survivin pathway. Int J Radiat Biol. 2021;97(3):356–366. doi:10.1080/09553002.2021.186404.
  • Romanov SA, Efimov AV, Aladova EE, Suslova KG, Kuznetsova IS, Sokolova AB, et al. Plutonium production and particles incorporation into the human body. J Environ Radioact. 2020;211:106073. doi:10.1016/j.jenvrad.2019.106073.
  • Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: a review. IJMS. 2019;20(6):1461. doi:10.3390/ijms20061461.
  • Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1alpha in lung cancer cells through alternative splicing mechanism. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118550. doi:10.1016/j.bbamcr.2019.118550.
  • Arifin M, Tanimoto K, Putra AC, Hiyama E, Nishiyama M, Hiyama K. Carcinogenesis and cellular immortalization without persistent inactivation of p16/Rb pathway in lung cancer. Int J Oncol. 2010;36(5):1217–1227. doi:10.3892/ijo_00000605.
  • Kuwano K. Epithelial cell apoptosis and lung remodeling. Cell Mol Immunol. 2007;4:419–429.
  • Hou J, Yan D, Liu Y, Huang P, Cui H. The roles of integrin α5β1 in human cancer. Onco Targets Ther. 2020;13:13329–13344. doi:10.2147/OTT.S273803.
  • Polette M, Thiblet J, Ploton D, Buisson AC, Monboisse JC, Tournier JM, Birembaut P. Distribution of a1(IV) and a3(IV) chains of type IV collagen in lung tumours. J Pathol. 1997;182(2):185–191. doi:10.1002/(SICI)1096-9896(199706)182:2 < 185::AID-PATH828 > 3.0.CO;2-F.
  • Zhang J, Liu J, Zhang H, Wang J, Hua H, Jiang Y. The role of network-forming collagens in cancer progression. Int J Cancer. 2022;151(6):833–842. doi:10.1002/ijc.34004.
  • Nakoman C, Resmi H, Ay O, Acikel U, Atabey N, Guner G. Effects of basic fibroblast factor (bFGF) on MMP-2, TIMP-2, and type-I collagen levels in human lung carcinoma fibroblasts. Biochimie. 2005;87(3–4):343–351. doi:10.1016/j.biochi.2004.11.015.
  • Vafashoar F, Mousavizadeh K, Poormoghim H, Tavasoli A, Shabestari Javadmoosavi MT, Mojtabavi SA. N. Gelatinases increase in bleomycin-induced systemic sclerosis mouse model. Iran J Allergy Asthma Immunol. 2019;18:182–189.
  • Summer R, Krishna R, Schriner D, Cuevas-Mora K, Sales D, Para R, et al. Matrix metalloproteinase activity in the lung is increased in Hermansky-Pudlak syndrome. Orphanet J Rare Dis. 2019;14(1):162. doi:10.1186/s13023-019-1143-0.
  • Sychugov GV, Kazachkov EL, Azizova TV, Teplyakova OV, Revina VS. Immunomorphological characteristics of pneumofibrosis at workers of plutonium manufacture. Ural Med J Pathomorphology. 2014;8:71–76.
  • Thiele ND, Wirth JW, Steins D, Koop AC, Ittrich H, Lohse AW, Kluwe J. TIMP-1 is upregulated, but not essential in hepatic fibrogenesis and carcinogenesis in mice. Sci Rep. 2017;7(1):714. doi:10.1038/s41598-017-00671-1.
  • Dai PL, Du XS, Hou Y, Li L, Xia YX, Wang L, et al. Different proteins regulated apoptosis, proliferation and metastasis of ung adenocarcinoma after radiotherapy at different time. Cancer Manag Res. 2020;12:2437–2447. doi:10.2147/CMAR.S219967.
  • Guo CB, Wang S, Deng C, Zhang DL, Wang FL, Jin XQ. Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diagn Ther. 2007;11(3):183–192. doi:10.1007/BF03256240.
  • Yamada K, Huang ZQ, Raska M, Reily C, Anderson JC, Suzuki H, et al. Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis. 2020;6(3):168–180. doi:10.1159/000505748.
  • Hellweg CE, Shinde V, Srinivasan SP, Henry M, Rotshteyn T, Baumstark-Khan C, et al. Radiation response of murine embryonic stem cells. Cells. 2020;9(7):1650. doi:10.3390/cells9071650.
  • Wang H, Wang J, Zhao Y, Zhang X, Liu J, Zhang C, et al. LIF is essential for ISC function and protects against radiation-induced gastrointestinal syndrome. Cell Death Dis. 2020;11(7):588. doi:10.1038/s41419-020-02790-6.
  • Yue X, Zhao Y, Zhang C, Li J, Liu Z, Liu J, Hu W. Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 2016;7(4):3777–3790. doi:10.18632/oncotarget.6756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.