168
Views
0
CrossRef citations to date
0
Altmetric
Articles

In Vitro and In Vivo Synergistic Antitumor Activity of Albumin-Coated Oleic Acid-Loaded Liposomes toward Hepatocellular Carcinoma

, , , , &
Pages 621-639 | Received 09 May 2023, Accepted 21 Jul 2023, Published online: 30 Jul 2023

References

  • Torimura T, Iwamoto H. Treatment and the prognosis of hepatocellular carcinoma in Asia. Liver Int. 2022;42(9):2042–2054. doi:10.1111/liv.15130.
  • Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–172. doi:10.1038/s41571-021-00573-2.
  • Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: a review. Biomed Pharmacother. 2019;109:2054–2061. doi:10.1016/j.biopha.2018.09.154.
  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. doi:10.1038/s41572-020-00240-3.
  • Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology. 2022;20(1):109. doi:10.1186/s12951-022-01309-9.
  • Caruso S, O’Brien DR, Cleary SP, Roberts LR, Zucman‐Rossi J. Genetics of hepatocellular carcinoma: approaches to explore molecular diversity. Hepatology. 2021;73:14–26.
  • Santoni M, Rizzo A, Kucharz J, Mollica V, Rosellini M, Marchetti A, et al. Complete remissions following immunotherapy or immuno-oncology combinations in cancer patients: the MOUSEION-03 meta-analysis. Cancer Immunol Immunother. 2023;72(6):1365–1379. doi:10.1007/s00262-022-03349-4.
  • Rizzo A, Ricci AD, Brandi G. Systemic adjuvant treatment in hepatocellular carcinoma: Tempted to do something rather than nothing. Future Oncol. 2020;16(32):2587–2589. doi:10.2217/fon-2020-0669.
  • Jindal A, Thadi A, Shailubhai K. Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol. 2019;9(2):221–232. doi:10.1016/j.jceh.2019.01.004.
  • Di Federico A, Rizzo A, Carloni R, De Giglio A, Bruno R, Ricci D, et al. Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: preclinical rationale and ongoing clinical trials. Expert Opin Investig Drugs. 2022;31(4):361–369. doi:10.1080/13543784.2022.2009455.
  • Rizzo A, Cusmai A, Gadaleta-Caldarola G, Palmiotti G. Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma? Expert Rev Gastroenterol Hepatol. 2022;16(4):333–339. doi:10.1080/17474124.2022.2064273.
  • Pei W, Cai L, Gong X, Zhang L, Zhang J, Zhu P, et al. Drug-loaded oleic-acid grafted mesoporous silica nanoparticles conjugated with α-lactalbumin resembling BAMLET-like anticancer agent with improved biocompatibility and therapeutic efficacy. Mater Today Bio. 2022;15:100272. doi:10.1016/j.mtbio.2022.100272.
  • Brede C, Hop B, Jørgensen K, Skadberg Ø. Measurement of glycated albumin in serum and plasma by LC-MS/MS. Scand J Clin Lab Invest. 2016;76(3):195–201. doi:10.3109/00365513.2015.1129671.
  • Esim O, Oztuna A, Sarper M, Hascicek C. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. J Drug Delivery Sci Technol. 2022;77:103906. doi:10.1016/j.jddst.2022.103906.
  • El-Fakharany EM, Abu-Serie MM, Litus EA, Permyakov SE, Permyakov EA, Uversky VN, et al. The use of human, bovine, and camel milk albumins in anticancer complexes with oleic acid. Protein J. 2018;37(3):203–215. doi:10.1007/s10930-018-9770-1.
  • Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr. 2022;3:1–31. doi:10.1080/10408398.2022.2045471.
  • Beigoli S, Sharifi Rad A, Askari A, Assaran Darban R, Chamani J. Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. J Biomol Struct Dyn. 2019;37(9):2265–2282. doi:10.1080/07391102.2018.1491421.
  • Kaspersen JD, Pedersen JN, Hansted JG, Nielsen SB, Sakthivel S, Wilhelm K, et al. Generic structures of cytotoxic liprotides: nano‐sized complexes with oleic acid cores and shells of disordered proteins. Chembiochem. 2014;15(18):2693–2702. doi:10.1002/cbic.201402407.
  • Fontana A, Spolaore B, de Laureto PP. The biological activities of protein/oleic acid complexes reside in the fatty acid. Biochim Biophys Acta. 2013;1834(6):1125–1143. doi:10.1016/j.bbapap.2013.02.041.
  • Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, et al. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics. Ivyspring International Publisher. 2022;12(3):1030–1060. doi:10.7150/thno.64805.
  • Almahdy O, EL-Fakharany EM, EL-Dabaa E, Ng TB, Redwan EM. Examination of the activity of camel milk casein against hepatitis C virus (Genotype-4a) and its apoptotic potential in hepatoma and HeLa cell lines. Hepat Mon. 2011;11(9):724–730. doi:10.5812/kowsar.1735143X.722.
  • Chen M, Zhou X, Chen R, Wang J, Richard DY, Wang Y, et al. Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy. Mater Today. 2019;25:66–87. doi:10.1016/j.mattod.2018.10.040.
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.00286.
  • van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022;11(5):e2100639. doi:10.1002/adhm.202100639.
  • Sevencan C, McCoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, et al. Cell membrane nanotherapeutics: from synthesis to applications emerging tools for personalized cancer therapy. Adv Therap. 2020;3(3):1900201. doi:10.1002/adtp.201900201.
  • Faroux JM, Ureta MM, Tymczyszyn EE, Gómez-Zavaglia A. An overview of peroxidation reactions using liposomes as model systems and analytical methods as monitoring tools. Colloids Surf B Biointerfaces. 2020;195:111254. doi:10.1016/j.colsurfb.2020.111254.
  • Wang J, Gong J, Wei Z. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech. 2021;23(1):27. doi:10.1208/s12249-021-02179-4.
  • Bhattacharya S, Saindane D, Prajapati BG. Liposomal drug delivery and its potential impact on cancer research. anti-cancer agents in medicinal chemistry (formerly current medicinal chemistry-anti-cancer agents). Anticancer Agents Med Chem. 2022;22:2671–2683.
  • Jung S, Lee S, Lee H, Yoon J, Lee EK. Oleic acid-embedded nanoliposome as a selective tumoricidal agent. Colloids Surf B Biointerfaces. 2016;146:585–589. doi:10.1016/j.colsurfb.2016.06.058.
  • Duncombe W. The colorimetric micro-determination of long-chain fatty acids. Biochem J. 1963;88(1):7–10. doi:10.1042/bj0880007.
  • Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang C-M, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009;30(30):6035–6040. doi:10.1016/j.biomaterials.2009.07.033.
  • Abu-Serie MM, El-Fakharany EM. Efficiency of novel nanocombinations of bovine milk proteins (lactoperoxidase and lactoferrin) for combating different human cancer cell lines. Sci Rep. 2017;7(1):16769. doi:10.1038/s41598-017-16962-6.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi:10.1006/abio.1976.9999.
  • Ashour H, Farghaly ME, Khowailed AA, Aboulhoda BE, Rashed LA, Elsebaie MM, et al. Modulation of miR-192/NF-κB/TGF-β/E-cadherin by thymoquinone protects against diethylnitrosamine/carbon tetrachloride hepatotoxicity. Physiol Int. 2022;109:371–387. doi:10.1556/2060.2022.00163.
  • Carleton HM, Drury RAB, Wallington EA. Carleton’s histological technique. USA: Oxford University Press; 1980.
  • Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed Pharmacother. 2021;134:111102. doi:10.1016/j.biopha.2020.111102.
  • Homayouni-Tabrizi M, Shabestarin H, Asoodeh A, Soltani M. Identification of two novel antioxidant peptides from camel milk using digestive proteases: impact on expression gene of superoxide dismutase (SOD) in hepatocellular carcinoma cell line. Int J Pept Res Ther. 2016;22(2):187–195. doi:10.1007/s10989-015-9497-1.
  • Uversky VN, El-Fakharany EM, Abu-Serie MM, Almehdar HA, Redwan EM. Divergent anticancer activity of free and formulated camel milk α-lactalbumin. Cancer Invest. 2017;35(9):610–623. doi:10.1080/07357907.2017.1373783.
  • Yu X, Xu Z, Wang X, Xu Q, Chen J. Bactrian camel serum albumins-based nanocomposite as versatile biocargo for drug delivery, biocatalysis and detection of hydrogen peroxide. Mater Sci Eng C Mater Biol Appl. 2020;109:110627. doi:10.1016/j.msec.2020.110627.
  • Wei X-Q, Ba K. Construction a long-circulating delivery system of liposomal curcumin by coating albumin. ACS Omega. 2020;5(27):16502–16509. doi:10.1021/acsomega.0c00930.
  • Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–1276. doi:10.1016/j.msec.2019.01.066.
  • Zhao Y, Cai C, Liu M, Zhao Y, Pei W, Chu X, et al. An organic solvent-free technology for the fabrication of albumin-based paclitaxel nanoparticles for effective cancer therapy. Colloids Surf B Biointerfaces. 2019;183:110394. doi:10.1016/j.colsurfb.2019.110394.
  • Wang J, Ding Y, Zhou W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int J Pharm. 2020;574:118940. doi:10.1016/j.ijpharm.2019.118940.
  • Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VT. When albumin meets liposomes: a feasible drug carrier for biomedical applications. Pharmaceuticals. 2021;14(4):1–17. doi:10.3390/ph14040296.
  • Abdel-Hamid NM, Abd Allah SG, Hassan MK, Ahmed AAM, Anber NH, Adel Faried I. Possible protective potency of argun nut (medemia argun–an ancient Egyptian palm) against hepatocellular carcinoma in rats. Nutr Cancer. 2022;74(2):527–538. doi:10.1080/01635581.2021.1883683.
  • Abdelhamid AM, Saber S, Youssef ME, Gaafar AGA, Eissa H, Abd-Eldayem MA, et al. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother. 2022;145:112455. doi:10.1016/j.biopha.2021.112455.
  • Fukawa A, Kobayashi O, Yamaguchi M, Uchida M, Hosono A. Bovine milk-derived α-lactalbumin prevents hepatic fibrosis induced by dimethylnitrosamine via nitric oxide pathway in rats. Biosci Biotechnol Biochem. 2017;81(10):1941–1947. doi:10.1080/09168451.2017.1356215.
  • Shariare MH, Pinky NJK, Abedin J, Kazi M, Aldughaim MS, Uddin MN. Liposomal drug delivery of blumea lacera leaf extract: in-vivo hepatoprotective effects. Nanomaterials. 2022;12(13):2262. doi:10.3390/nano12132262.
  • Ali MM, Abdel-Halim AH, Mahmoud AE, Abd El-Kader MA, Soliman SM. Anticancer, antiangiogenesis and antimetastasis properties of prepared sulfated oligosaccharides on chemically induced hepatocellular carcinoma in rats. Der Pharma Chemica. 2014;6(3):354–366.
  • Liu X, Meng J, Xu H, Niu J. Alpha-fetoprotein to transaminase ratio is related to higher diagnostic efficacy for hepatocellular carcinoma. Medicine. 2019;98(17):e15414. doi:10.1097/MD.0000000000015414.
  • Baj J, Bryliński Ł, Woliński F, Granat M, Kostelecka K, Duda P, et al. Biomarkers and genetic markers of hepatocellular carcinoma and cholangiocarcinoma—what do we already know. Cancers. MDPI. 2022;14:1493. doi:10.3390/cancers14061493.
  • Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin Z, et al. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis. 2020;11(10):822. doi:10.1038/s41419-020-03030-7.
  • Pathak P, Kumar V, Khalilullah H, Grishina M, Singh H, Verma A. Debelalactone prevents hepatic cancer via diminishing the inflammatory response and oxidative stress on male wistar rats. Molecules. 2022;27:4499. doi:10.3390/molecules27144499.
  • Bai D-S, Zhang C, Chen P, Jin S-J, Jiang G-Q. The prognostic correlation of AFP level at diagnosis with pathological grade, progression, and survival of patients with hepatocellular carcinoma. Sci Rep. 2017;7(1):12870. doi:10.1038/s41598-017-12834-1.
  • Sun G, Hou X, Zhang L, Zhang H, Shao C, Li F, et al. 3,5,3’-triiodothyronine-loaded liposomes inhibit hepatocarcinogenesis via inflammation-associated macrophages. Front Oncol. 2022;12:877982. doi:10.3389/fonc.2022.877982.
  • Hassan HA. Chapter 11 - Oxidative stress as a crucial factor in liver associated disorders: potential therapeutic effect of antioxidants. In: Patel VB, Rajendram R, Preedy VR, editors. The liver. Boston: Academic Press; 2018. p. 121–130.
  • Mansour DF, Abdallah HMI, Ibrahim BMM, Hegazy RR, Esmail RSE, Abdel-Salam LO. The carcinogenic agent diethylnitrosamine induces early oxidative stress, inflammation and proliferation in rat liver, stomach and colon: protective effect of ginger extract. Asian Pac J Cancer Prev. 2019;20(8):2551–2561. doi:10.31557/APJCP.2019.20.8.2551.
  • Tarabay HH, Abol-Enein H, Awadalla A, Mortada WI, Abdel-Aziz AF. Gene expression and oxidative stress markers profile associated with toxic metals in patients with renal cell carcinoma. Mol Biol Rep. 2022;49(2):1161–1169. doi:10.1007/s11033-021-06944-3.
  • Hassan HA, Ghareb NE, Azhari GF. Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. HR. 2017;3(2):27–33. doi:10.20517/2394-5079.2016.33.
  • Rahman M, Al-Ghamdi SA, Alharbi KS, Beg S, Sharma K, Anwar F, et al. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv. 2019;26(1):782–793. doi:10.1080/10717544.2019.1606865.
  • Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, et al. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch Biochem Biophys. 2017;623:58–63.
  • Shakeel K, Rabail R, Haq I-U, Sehar S, Nawaz A, Manzoor MF, et al. Camel milk protectiveness towards multiple liver disorders: a review. Front Nutr. 2022;9:944842. doi:10.3389/fnut.2022.944842.
  • Zhang Q, Zhang L, Li Z, Xie X, Gao X, Xu X. Inducing controlled release and increased tumor-targeted delivery of chlorambucil via albumin/liposome hybrid nanoparticles. AAPS Pharm Sci Tech. 2017;18(8):2977–2986. doi:10.1208/s12249-017-0782-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.