169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Drug Repurposing Analysis for Colorectal Cancer through Network Medicine Framework: Novel Candidate Drugs and Small Molecules

ORCID Icon & ORCID Icon
Pages 713-733 | Received 12 Oct 2022, Accepted 01 Sep 2023, Published online: 20 Sep 2023

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660.
  • Boursi B, Arber N. Current and future clinical strategies in colon cancer prevention and the emerging role of chemoprevention. Curr Pharm Des. 2007;13(22):2274–2282. doi:10.2174/138161207781368783.
  • Parkin DM. International variation. Oncogene. 2004;23(38):6329–6340. doi:10.1038/sj.onc.1207726.
  • Bodmer WF. Europe PMC funders group cancer genetics : colorectal cancer as a model. J Hum Genet. 2008;51(5):391–396. doi:10.1007/s10038-006-0373-x.Cancer.
  • Azuaje F. Bioinformatics and biomarker discovery. Hoboken (NJ): Wiley; 2010. doi:10.1002/9780470686423.
  • McDermott JE, Wang J, Mitchell H, Webb-Robertson B-J, Hafen R, Ramey J, et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn. 2013;7(1):37–51. doi:10.1517/17530059.2012.718329.
  • Ivliev AE, 't Hoen PAC, Borisevich D, Nikolsky Y, Sergeeva MG. Drug repositioning through systematic mining of gene coexpression networks in cancer. PLoS One. 2016;11(11):e0165059. doi:10.1371/journal.pone.0165059.
  • Gov E. Co-expressed functional module-related genes in ovarian cancer stem cells represent novel prognostic biomarkers in ovarian cancer. Syst Biol Reprod Med. 2020;66(4):255–266. doi:10.1080/19396368.2020.1759730.
  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. doi:10.1038/nrd.2018.168.
  • Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–683. doi:10.1038/nrd1468.
  • Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044–2052. doi:10.1016/j.ophtha.2015.06.017.
  • Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728–1738. doi:10.1016/S0140-6736(12)60282-7.
  • Ross EL, Hutton DW, Stein JD, Bressler NM, Jampol LM, Glassman AR. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment analysis from the diabetic retinopathy clinical research network comparative effectiveness trial. JAMA Ophthalmol. 2016;134(8):888–896. doi:10.1001/jamaophthalmol.2016.1669.
  • Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–3506. doi:10.1200/JCO.2012.42.8201.
  • Markham A. Brigatinib: first global approval. Drugs. 2017;77(10):1131–1135. doi:10.1007/s40265-017-0776-3.
  • Zhang Z, Gao W, Zhou L, Chen Y, Qin S, Zhang L, et al. Repurposing brigatinib for the treatment of colorectal cancer based on inhibition of ER-phagy. Theranostics. 2019;9(17):4878–4892. doi:10.7150/thno.36254.
  • Cunha BA, Domenico P, Cunha CB. Pharmacodynamics of doxycycline. Clin Microbiol Infect. 2000;6(5):270–273. doi:10.1046/j.1469-0691.2000.00058-2.x.
  • Onoda T, Ono T, Dhar DK, Yamanoi A, Fujii T, Nagasue N. Doxycycline inhibits cell proliferation and invasive potential: combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med. 2004;143(4):207–216. doi:10.1016/j.lab.2003.12.012.
  • Okazaki S, Ishikawa T, Iida S, Ishiguro M, Kobayashi H, Higuchi T, et al. Clinical significance of UNC5B expression in colorectal cancer. Int J Oncol. 2012;40(1):209–216. doi:10.3892/ijo.2011.1201.
  • Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A, et al. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. Am J Pathol. 2011;178(2):537–547. doi:10.1016/j.ajpath.2010.10.020.
  • Lin G, He X, Ji H, Shi L, Davis RW, Zhong S. Reproducibility probability score - incorporating measurement variability across laboratories for gene selection. Nat Biotechnol. 2006;24(12):1476–1477. doi:10.1038/nbt1206-1476.
  • Vlachavas EI, Pilalis E, Papadodima O, Koczan D, Willis S, Klippel S, et al. Radiogenomic analysis of F-18-fluorodeoxyglucose positron emission tomography and gene expression data elucidates the epidemiological complexity of colorectal cancer landscape. Comput Struct Biotechnol J. 2019;17:177–185. doi:10.1016/j.csbj.2019.01.007.
  • Hong Y, Downey T, Eu KW, Koh PK, Cheah PY. A “metastasis-prone” signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 2010;27(2):83–90. doi:10.1007/s10585-010-9305-4.
  • Tsukamoto S, Ishikawa T, Iida S, Ishiguro M, Mogushi K, Mizushima H, et al. Clinical significance of osteoprotegerin expression in human colorectal cancer. Clin Cancer Res. 2011;17(8):2444–2450. doi:10.1158/1078-0432.CCR-10-2884.
  • Chen X, Deane NG, Lewis KB, Li J, Zhu J, Washington MK, et al. Comparison of nanostring nCounter® data on FFPE colon cancer samples and affymetrix microarray data on matched frozen tissues. PLoS One. 2016;11(5):e0153784. doi:10.1371/journal.pone.0153784.
  • Galamb O, Wichmann B, Sipos F, Spisák S, Krenács T, Tóth K, et al. Dysplasia-carcinoma transition specific transcripts in colonic biopsy samples. PLoS One. 2012;7(11):e48547. doi:10.1371/journal.pone.0048547.
  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res. 2013;41:D991–995. doi:10.1093/nar/gks1193.
  • Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy - analysis of affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–315. doi:10.1093/bioinformatics/btg405.
  • Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–193. doi:10.1093/bioinformatics/19.2.185.
  • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):Article3–25. Article3. doi:10.2202/1544-6115.1027.
  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):293. doi:10.1186/1471-2105-15-293.
  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn923.
  • Gov E, Arga KY. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer. Sci Rep. 2017;7(1):4996. doi:10.1038/s41598-017-05298-w.
  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069–1076. doi:10.1038/nmeth.2212.
  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using cytoscape. Nat Protoc. 2007;2(10):2366–2382. doi:10.1038/nprot.2007.324.
  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6.
  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi:10.1093/nar/gkaa1074.
  • Waskom ML. Seaborn: statistical data visualization. JOSS. 2021;6(60):3021. doi:10.21105/joss.03021.
  • Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One. 2013;8(9):e74250. doi:10.1371/journal.pone.0074250.
  • Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn)). 2015;19(1A):A68–77. doi:10.5114/wo.2014.47136.
  • Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144–D1151. doi:10.1093/nar/gkaa1084.
  • Duan Q, Reid SP, Clark NR, Wang Z, Fernandez NF, Rouillard AD, et al. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl. 2016;2(1):16015–16015. doi:10.1038/npjsba.2016.15.
  • White J. PubMed 2.0. Med Ref Serv Q. 2020;39(4):382–387. doi:10.1080/02763869.2020.1826228.
  • Rajaraman A, Ullman JD. Data mining. Mining of massive datasets. Cambridge: Cambridge University Press; 2011. p. 1–17. doi:10.1017/CBO9781139058452.002.
  • Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–2940. doi:10.1093/bioinformatics/btx364.
  • Hu Y, Zhou P, Lin Y, Yang D, Wang B. Anti-colorectal cancer effect via application of polyethylene glycol modified liposomal apatinib. J Biomed Nanotechnol. 2019;15(6):1256–1266. doi:10.1166/jbn.2019.2770.
  • Hong Z, Tang P, Liu B, Ran C, Yuan C, Zhang Y, et al. Ferroptosis-related genes for overall survival prediction in patients with colorectal cancer can be inhibited by gallic acid. Int J Biol Sci. 2021;17(4):942–956. doi:10.7150/ijbs.57164.
  • Xu J, Tan HB, Zhang YJ, Tang DY, Zhan F, Li HY, et al. Catalyst-free one-pot synthesis of densely substituted pyrazole-pyrazines as anti-colorectal cancer agents. Sci Rep. 2020;10(1):9281. doi:10.1038/s41598-020-66137-z.
  • Zhang Z, Li K, Zheng Z, Liu Y. Cordycepin inhibits colon cancer proliferation by suppressing MYC expression. BMC Pharmacol Toxicol. 2022;23(1):12. doi:10.1186/s40360-022-00551-z.
  • Qian K, Sun L, Zhou G, Ge H, Meng Y, Li J, et al. Trifluoperazine as an alternative strategy for the inhibition of tumor growth of colorectal cancer. J Cell Biochem. 2019;120(9):15756–15765. doi:10.1002/jcb.28845.
  • Zeng X, Liu L, Zheng M, Sun H, Xiao J, Lu T, et al. Pantoprazole, an FDA-approved proton-pump inhibitor, suppresses colorectal cancer growth by targeting T-cell-originated protein kinase. Oncotarget. 2016;7(16):22460–22473. doi:10.18632/oncotarget.7984.
  • Tatsuta M, Iishi H, Baba M, Taniguchi H. Tissue norepinephrine depletion as a mechanism for cysteamine inhibition of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer. 1989;44(6):1008–1011. doi:10.1002/ijc.2910440612.
  • Ozawa Y, Sugi NH, Nagasu T, Owa T, Watanabe T, Koyanagi N, et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur J Cancer. 2001;37(17):2275–2282. doi:10.1016/s0959-8049(01)00275-1.
  • Morrison ML, Williamson K, Arthur K, Price GJ, Hamilton PW, Maxwell P. Phenotypic changes in mitochondrial membrane potential (Delta psi(m)) during valinomycin-induced depolarisation and apoptosis. Cell Oncol. 2005;27(4):231–236. doi:10.1155/2005/763421.
  • Corcoran RB, Atreya CE, Falchook GS, Kwak EL, Ryan DP, Bendell JC, et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J Clin Oncol. 2015;33(34):4023–4031. doi:10.1200/JCO.2015.63.2471.
  • Bangi E, Ang C, Smibert P, Uzilov AV, Teague AG, Antipin Y, et al. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Sci Adv. 2019;5(5):eaav6528. doi:10.1126/sciadv.aav6528.
  • Saturno G, Valenti M, De Haven Brandon A, Thomas GV, Eccles S, Clarke PA, et al. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling. Oncotarget. 2013;4(8):1185–1198. doi:10.18632/oncotarget.1162.
  • Sini P, James D, Chresta C, Guichard S. Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells. Autophagy. 2010;6 (4):553–554. doi:10.4161/auto.6.4.11671.
  • Faber AC, Coffee EM, Costa C, Dastur A, Ebi H, Hata AN, et al. mTOR inhibition specifi cally sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1. Cancer Discov. 2014;4(1):42–52. doi:10.1158/2159-8290.CD-13-0315.
  • Lee CK, Lee ME, Lee WS, Kim JM, Park KH, Kim TS, et al. Dovitinib (TKI258), a multi-target angiokinase inhibitor, is effective regardless of KRAS or BRAF mutation status in colorectal cancer. Am J Cancer Res. 2015;5(1):72–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300687/. Cited in PubMed; PMID:25628921.
  • Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, et al. Unfolded protein response in colorectal cancer. Cell Biosci. 2021;11(1):26. doi:10.1186/s13578-021-00538-z.
  • Partik G, Hochegger K, Schörkhuber M, Marian B. Inhibition of epidermal-growth-factor-receptor-dependent signalling by tyrphostins A25 and AG1478 blocks growth and induces apoptosis in colorectal tumor cells in vitro. J Cancer Res Clin Oncol. 1999;125(7):379–388. doi:10.1007/s004320050290.
  • Mínguez M, López Higueras A, Júdez J. Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016;108(12):790–806. doi:10.17235/reed.2016.4571/2016.
  • Amaravani M, Prasad NK, Ramakrishna V. COX-2 structural analysis and docking studies with gallic acid structural analogues. Springerplus. 2012;1(1):58. doi:10.1186/2193-1801-1-58.
  • Pal D, Saha S, Singh S. Importance of pyrazole moiety in the field of cancer. Int J Pharm Pharm Sci. 2012;4(2):98–104. https://www.researchgate.net/publication/277306189_Importance_of_pyrazole_moiety_in_the_field_of_cancer
  • Feierman DE, Cederbaum AI. Oxidation of the alcohol dehydrogenase inhibitor pyrazole to 4-hydroxypyrazole by microsomes. Effect of cytochrome P-450 inducing agents. Drug Metab Dispos. 1987;15(5):634–639. Cited in PubMed; PMID:2891479.
  • Jin Y, Meng X, Qiu Z, Su Y, Yu P, Qu P. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J Biol Sci. 2018;25(5):991–995. doi:10.1016/j.sjbs.2018.05.016.
  • Pluta K, Morak-Młodawska B, Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur J Med Chem. 2011;46(8):3179–3189. doi:10.1016/j.ejmech.2011.05.013.
  • Qi L, Ding Y. Potential antitumor mechanisms of phenothiazine drugs. Sci China Life Sci. 2013;56(11):1020–1027. doi:10.1007/s11427-013-4561-6.
  • Cheer SM, Prakash A, Faulds D, Lamb HM. Pantoprazole: an update of its pharmacological properties and therapeutic use in the management of acid-related disorders. Drugs. 2003;63(1):101–133. doi:10.2165/00003495-200363010-00006.
  • Ando K, Takahashi F, Motojima S, Nakashima K, Kaneko N, Hoshi K, Takahashi K. Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J Clin Oncol. 2013;31(6):e69–e72. doi:10.1200/JCO.2012.44.2020.
  • Elmonem MA, Veys KR, Soliman NA, Dyck M, Van Heuvel LP, Van Den Levtchenko E. Cystinosis : a review. Orphanet J Rare Dis. 2016;11(1):47. doi:10.1186/s13023-016-0426-y.
  • Ahmed MO, Al-Badr AA. Chapter 6 - Lornoxicam. In: Brittain HG, editor. Profiles of drug substances, excipients and related methodology. Vol 36. Cambridge (MA): Academic Press; 2011. p. 205–239. doi:10.1016/B978-0-12-387667-6.00006-3.
  • Bryson HM, Benfield P. Donepezil. Drugs Aging. 1997;10(3):234–239. doi:10.2165/00002512-199710030-00007.
  • Gearhart JM, Jepson GW, Clewell HJ, Andersen ME, Conolly RB. Physiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters. Environ Health Perspect. 1994;102(11):51–60. doi:10.1289/ehp.94102s1151.
  • Zhan ZJ, Bian HL, Wang JW, Shan WG. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities. Bioorg Med Chem Lett. 2010;20(5):1532–1534. doi:10.1016/j.bmcl.2010.01.097.
  • Garcia DF, Oliveira TG, Molfetta GA, Garcia LV, Ferreira CA, Marques AA, et al. Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine. Genet Mol Biol. 2011;34(1):40–44. doi:10.1590/S1415-47572011000100008.
  • Jiang A, Zhao H, Cai J, Jiang WG. Possible effect of muscle-relaxant anaesthetics on invasion, adhesion and migration of breast cancer cells. Anticancer Res. 2016;36(3):1259–1265. https://ar.iiarjournals.org/content/36/3/1259.short. Cited in PubMed; PMID:26977023.
  • Taraschenko OD, Barnes WG, Herrick-Davis K, Yokoyama Y, Boyd DL, Hough LB. Actions of tacrine and galanthamine on histamine-N-methyltransferase. Methods Find Exp Clin Pharmacol. 2005;27(3):161–165. doi:10.1358/mf.2005.27.3.890872.
  • Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci. 2014;15(6):9809–9825. doi:10.3390/ijms15069809.
  • Howard P, Remi J, Remi C, Charlesworth S, Whalley H, Bhatia R, et al. Levetiracetam. J Pain Symptom Manage. 2018;56(4):645–649. doi:10.1016/j.jpainsymman.2018.07.012.
  • Li J, Yao QY, Xue JS, Wang LJ, Yuan Y, Tian XY, et al. Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer. Acta Pharmacol Sin. 2017;38(9):1282–1296. doi:10.1038/aps.2017.24.
  • O’Doherty DS, Shields CD. Methocarbamol; new agent in treatment of neurological and neuromuscular diseases. J Am Med Assoc. 1958;167(2):160–163. doi:10.1001/jama.1958.02990190014003.
  • Parr JS, Khalifah RG. Inhibition of carbonic anhydrases I and II by N-unsubstituted carbamate esters. J Biol Chem. 1992;267(35):25044–25050. doi:10.1016/S0021-9258(19)74003-4.
  • Sharma S. Interleukin-6 trans-signaling: a pathway with therapeutic potential for diabetic retinopathy. Front Physiol. 2021;12:689429. doi:10.3389/fphys.2021.689429.
  • Ford JM, Truman CA, Wilcock GK, Roberts CJC, Bristol F. Serum concentrations of tacrine hydrochloride predict its adverse effects in Alzheimer’s disease. Clin Pharmacol Ther. 1993;53(6):691–695. doi:10.1038/clpt.1993.91.
  • Burmester GR, Lin Y, Patel R, van Adelsberg J, Mangan EK, Graham NMH, et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann Rheum Dis. 2017;76(5):840–847. doi:10.1136/annrheumdis-2016-210310.
  • Bosak A, Gazić I, Vinković V, Kovarik Z. Stereoselective inhibition of human, mouse, and horse cholinesterases by bambuterol enantiomers. Chem Biol Interact. 2008;175(1–3):192–195. doi:10.1016/j.cbi.2008.04.050.
  • Supuran CT, Scozzafava A. Benzolamide is not a membrane-impermeant carbonic anhydrase inhibitor. J Enzyme Inhib Med Chem. 2004;19(3):269–273. doi:10.1080/14756360410001689559.
  • PubChem. Demecarium bromide. National Library of Medicine, National Center for Biotechnology Information. 2022. Accessed September 20, 2022. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Demecarium-bromide.
  • Nachon F, Asojo OA, Borgstahl GEO, Masson P, Lockridge O. Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging. Biochemistry. 2005;44(4):1154–1162. doi:10.1021/bi048238d.
  • Baraka A. Hexafluorenium-suxamethonium interaction in patients with normal versus atypical cholinesterase. Br J Anaesth. 1975;47(8):885–888. doi:10.1093/bja/47.8.885.
  • Wilde MI, Faulds D. Oprelvekin. BioDrugs. 1998;10(2):159–171. doi:10.2165/00063030-199810020-00006.
  • Gottwald MD, Rozanski RI. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investig Drugs. 1999;8(10):1673–1682. doi:10.1517/13543784.8.10.1673.
  • Enz A, Boddeke H, Gray J, Spiegel R. Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann NY Acad Sci. 1991;640(1):272–275. doi:10.1111/j.1749-6632.1991.tb00232.x.
  • Heo YA. Satralizumab : First Approval. Drugs. 2020;80(14):1477–1482. doi:10.1007/s40265-020-01380-2.
  • Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol. 2018;10(2):a028415. doi:10.1101/cshperspect.a028415.
  • Peng Z, Heath J, Drachenberg C, Raufman J-P, Xie G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer. 2013;13(1):204. doi:10.1186/1471-2407-13-204.
  • Finkbeiner AE. Is bethanechol chloride clinically effective in promoting bladder emptying? A literature review. J Urol. 1985;134(3):443–449. doi:10.1016/s0022-5347(17)47234-x.
  • Kim HT, Cha H, Hwang KY. Structural insight into the inhibition of carbonic anhydrase by the COX-2-selective inhibitor polmacoxib (CG100649). Biochem Biophys Res Commun. 2016;478(1):1–6. doi:10.1016/j.bbrc.2016.07.114.
  • Lee SL, Shih HT, Chi YC, Li YP, Yin SJ. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole. Chem Biol Interact. 2011;191(1–3):26–31. doi:10.1016/j.cbi.2010.12.005.
  • Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol. 1988;106(9):1190–1195. doi:10.1001/archopht.1988.01060140350030.
  • Block ER, Rostand RA. Carbonic anhydrase inhibition in glaucoma: hazard or benefit for the chronic lunger? Surv Ophthalmol. 1978;23(3):169–172. doi:10.1016/0039-6257(78)90152-2.
  • Drugbank. Chlorothiazide. Drugbank online. 2022. Accessed September 20, 2022. Available from: https://go.drugbank.com/drugs/DB00880.
  • Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem. 2021;209:112923. doi:10.1016/j.ejmech.2020.112923.
  • Lu H, Zhang H, Jiang Y. Methazolamide in high-altitude illnesses. Eur J Pharm Sci. 2020;148:105326. doi:10.1016/j.ejps.2020.105326.
  • Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104(1):270–275. doi:10.1073/pnas.0609412103.
  • Peng XD, Wu XH, Chen LJ, Wang ZL, Hu XH, Song LF, et al. Inhibition of phosphoinositide 3-kinase ameliorates dextran sodium sulfate-induced colitis in mice. J Pharmacol Exp Ther. 2010;332(1):46–56. doi:10.1124/jpet.109.153494.
  • Petrik D, Jiang Y, Birnbaum SG, Powell CM, Kim M-S, Hsieh J, et al. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. FASEB J. 2012;26(8):3148–3162. doi:10.1096/fj.11-201426.
  • Lin CF, Hsu KC, HuangFu WC, Lin TE, Huang HL, Pan SL. Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury. BMC Pharmacol Toxicol. 2020;21(1):21. doi:10.1186/s40360-020-0400-0.
  • Luch A. Nature and nurture - lessons from chemical carcinogenesis. Nat Rev Cancer. 2005;5(2):113–125. doi:10.1038/nrc1546.
  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85. doi:10.1056/NEJM200007133430201.
  • Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer. 2002;99(2):260–266. doi:10.1002/ijc.10332.
  • Tan S, Zou C, Zhang W, Yin M, Gao X, Tang Q. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv. 2017;24(1):1831–1842. doi:10.1080/10717544.2017.1406561.
  • Roy HK, Kunte DP, Koetsier JL, Hart J, Kim YL, Liu Y, et al. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling. Mol Cancer Ther. 2006;5(8):2060–2069. doi:10.1158/1535-7163.MCT-06-0054.
  • Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79(3):307–313. doi:10.1016/S0308-8146(02)00145-0.
  • Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 2016;22(15):3952–3961. doi:10.3748/wjg.v22.i15.3952.
  • Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, et al. Pyrazole-4-carboxamide (YW2065): a therapeutic candidate for colorectal cancer via dual activities of Wnt/β-catenin signaling inhibition and AMP-activated protein kinase (AMPK) activation. J Med Chem. 2019;62(24):11151–11164. doi:10.1021/acs.jmedchem.9b01252.
  • Hsu PY, Lin YH, Yeh EL, Lo HC, Hsu TH, Su CC. Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model. Oncotarget. 2017;8(55):93712–93728. doi:10.18632/oncotarget.21477.
  • Hwang IH, Oh SY, Jang HJ, Jo E, Joo JC, Lee KB, et al. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One. 2017;12(10):e0186489. doi:10.1371/journal.pone.0186489.
  • Wang C, Mao ZP, Wang L, Zhang FH, Wu GH, Wang DY, et al. Cordycepin inhibits cell growth and induces apoptosis in human cholangiocarcinoma. Neoplasma. 2017;64(6):834–839. doi:10.4149/neo_2017_604.
  • Wang CW, Hsu WH, Tai CJ. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget. 2017;8(2):3049–3058. doi:10.18632/oncotarget.13829.
  • Zeng Y, Lian S, Li D, Lin X, Chen B, Wei H, et al. Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice. Biomed Pharmacother. 2017;95:1868–1875. doi:10.1016/j.biopha.2017.09.069.
  • Li SZ, Ren JW, Fei J, Zhang XD, Du RL. Cordycepin induces Bax‑dependent apoptosis in colorectal cancer cells. Mol Med Rep. 2019;19(2):901–908. doi:10.3892/mmr.2018.9717.
  • Jeong JW, Park C, Cha HJ, Hong SH, Park SH, Kim GY, et al. Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4. BMB Rep. 2018;51(10):532–537. doi:10.5483/BMBRep.2018.51.10.120.
  • Deng Q, Li X, Fang C, Li X, Zhang J, Xi Q, et al. Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int Immunopharmacol. 2022;107:108695. doi:10.1016/j.intimp.2022.108695.
  • Wang X, Liu C, Wang J, Fan Y, Wang Z, Wang Y. Proton pump inhibitors increase the chemosensitivity of patients with advanced colorectal cancer. Oncotarget. 2017;8(35):58801–58808. doi:10.18632/oncotarget.18522.
  • Wan XM, Zheng F, Zhang L, Miao YY, Man N, Wen LP. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int J Cancer. 2011;129(5):1087–1095. doi:10.1002/ijc.25771.
  • Pinkerton M, Steinrauf LK, Dawkins P. The molecular structure and some transport properties of valinomycin. Biochem Biophys Res Commun. 1969;35(4):512–518. doi:10.1016/0006-291X(69)90376-3.
  • Mahmoud WH, Mohamed GG, El-Dessouky MMI. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial and antibreastic cancer activity studies. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:598–608. doi:10.1016/j.saa.2013.11.069.
  • Drakopoulou S, Kontis E, Pantiora E, Vezakis A, Karandrea D, Aravidou E, et al. Effects of lornoxicam on anastomotic healing: a randomized, blinded, placebo-control experimental study. Surg Res Pract. 2016;2016:4328089–6. doi:10.1155/2016/4328089.
  • Wu J, Wang Y, Xu X, Cao H, Sahengbieke S, Sheng H, et al. Transcriptional activation of FN1 and IL11 by HMGA2 promotes the malignant behavior of colorectal cancer. Carcinogenesis. 2016;37(5):511–521. doi:10.1093/carcin/bgw029.
  • Putoczki TL, Ernst M. IL-11 signaling as a therapeutic target for cancer. Immunotherapy. 2015;7(4):441–453. doi:10.2217/imt.15.17.
  • Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103–113. doi:10.1016/j.ccr.2009.01.001.
  • Kim YH, Kim T, Joo JD, Han JH, Kim YJ, Kim IA, et al. Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer. 2015;121(17):2926–2932. doi:10.1002/cncr.29439.
  • Hamid M, Ghani A, Micaily I, Sarwar U, Lashari B, Malik F. Posterior reversible encephalopathy syndrome (PRES) after bevacizumab therapy for metastatic colorectal cancer. J Community Hosp Intern Med Perspect. 2018;8(3):130–133. doi:10.1080/20009666.2018.1478563.
  • Chen VCH, Hsieh YH, Lin TC, Lu ML, Liao YT, Yang YH, et al. New use for old drugs: the protective effect of risperidone on colorectal cancer. Cancers. 2020;12(6):1560. doi:10.3390/cancers12061560.
  • Gaur S, Chen L, Ann V, Lin W-C, Wang Y, Chang VHS, et al. Dovitinib synergizes with oxaliplatin in suppressing cell proliferation and inducing apoptosis in colorectal cancer cells regardless of RAS-RAF mutation status. Mol Cancer. 2014;13(1):21. doi:10.1186/1476-4598-13-21.
  • Zhou L, Gao W, Wang K, Huang Z, Zhang L, Zhang Z, et al. Brefeldin A inhibits colorectal cancer growth by triggering Bip/Akt-regulated autophagy. FASEB J. 2019;33(4):5520–5534. doi:10.1096/fj.201801983R.
  • Cao J, Lv W, Wang L, Xu J, Yuan P, Huang S, et al. Ricolinostat (ACY-1215) suppresses proliferation and promotes apoptosis in esophageal squamous cell carcinoma via miR-30d/PI3K/AKT/mTOR and ERK pathways. Cell Death Dis. 2018;9(8):817. doi:10.1038/s41419-018-0788-2.
  • Tan Y, Zhang S, Zhu H, Chu Y, Zhou H, Liu D, et al. Histone deacetylase 6 selective inhibitor ACY1215 inhibits cell proliferation and enhances the chemotherapeutic effect of 5-fluorouracil in HCT116 cells. Ann Transl Med. 2019;7(1):2–2. doi:10.21037/atm.2018.11.48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.