40
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of Epigenetic Modifier Drug Combination for Synergistic Effect against Glioblastoma Multiform Cancer Cell Lines

, , &
Pages 319-332 | Received 18 Oct 2023, Accepted 16 Apr 2024, Published online: 02 May 2024

References

  • Reifenberger G, Wirsching H-G, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas—implications for classification and therapy. Nat Rev Clin Oncol. 2017;14(7):434–452. doi:10.1038/nrclinonc.2016.204.
  • Rajesh Y, Pal I, Banik P, Chakraborty S, Borkar SA, Dey G, et al. Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin. 2017;38(5):1–23.
  • Zhang Q-M, Shen N, Xie S, Bi S-Q, Luo B, Lin Y-D, et al. MAGED4 expression in glioma and upregulation in glioma cell lines with 5-aza-2'-deoxycytidine treatment. Asian Pac J Cancer Prev. 2014;15(8):3495–3501. doi:10.7314/apjcp.2014.15.8.3495.
  • Rasime K. Epigenetics of glioblastoma multiforme. J Clin Res Bioethics. 2015;6(3):1–6.
  • Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA. 2000;97(12):6242–6244. doi:10.1073/pnas.97.12.6242.
  • Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, Ahuja N. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics. 2015;7(2):215–235. doi:10.2217/epi.14.73.
  • Altucci L, Minucci S. Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer. 2009;45(7):1137–1145. doi:10.1016/j.ejca.2009.03.001.
  • Altucci L, Rots MG. Epigenetic drugs: from chemistry via biology to medicine and back. Clin Epigenetics. 2016;8(1):56. doi:10.1186/s13148-016-0222-5.
  • Mummaneni P, Shord SS. Epigenetics and oncology. Pharmacotherapy. 2014;34(5):495–505. doi:10.1002/phar.1408.
  • Lehár J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27(7):659–666. doi:10.1038/nbt.1549.
  • Weiss A, Berndsen RH, Ding X, Ho C-M, Dyson PJ, van den Bergh H, et al. A streamlined search technology for identification of synergistic drug combinations. Sci Rep. 2015;5(1):14508–14519. doi:10.1038/srep14508.
  • Gomes T, Barradas C, Dias T, Verdial J, Morais JS, Ramalhosa E, et al. Optimization of mead production using response surface methodology. Food Chem Toxicol. 2013;59:680–686. doi:10.1016/j.fct.2013.06.034.
  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–977. doi:10.1016/j.talanta.2008.05.019.
  • Boubakri A, Hafiane A, Bouguecha ST. Application of response surface methodology for modeling and optimization of membrane distillation desalination process. J Ind Eng Chem. 2014;20(5):3163–3169. doi:10.1016/j.jiec.2013.11.060.
  • Nasrollahi P, Khajeh K, Akbari N. Optimizing of the formation of active BMW-amylase after in vitro refolding. Protein Expr Purif. 2012;85(1):18–24. doi:10.1016/j.pep.2012.06.013.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.
  • Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67(1):73–89. doi:10.1146/annurev-med-111314-035900.
  • Benedetti R, Conte M, Iside C, Altucci L. Epigenetic-based therapy: from single-to multi-target approaches. Int J Biochem Cell Biol. 2015;69:121–131. doi:10.1016/j.biocel.2015.10.016.
  • Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife. 2013;2:e00747. doi:10.7554/eLife.00747.
  • Fine HA, Wen PY, Maher EA, Viscosi E, Batchelor T, Lakhani N, et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol. 2003;21(12):2299–2304. doi:10.1200/JCO.2003.08.045.
  • Devita VT, Young RC, Canellos GP. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer. 1975;35(1):98–110. doi:10.1002/1097-0142(197501)35:1<98::AID-CNCR2820350115>3.0.CO;2-B.
  • Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol. 2014;73:71–83. doi:10.1016/j.fct.2014.08.005.
  • Ornstein MC, Mukherjee S, Sekeres MA. More is better: Combination therapies for myelodysplastic syndromes. Best Prac Res Clin Haematol. 2014;28(1):1–10.
  • Oblad R, Doughty H, Lawson J, Christensen M, Kenealey J. Application of mixture design response surface methodology for combination chemotherapy in PC-3 human prostate cancer cells. Mol Pharmacol. 2018;94(2):907–916. doi:10.1124/mol.117.111450.
  • Borodovsky A, Salmasi V, Turcan S, Fabius AWM, Baia GS, Eberhart CG, et al. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget. 2013;4(10):1737–1747. doi:10.18632/oncotarget.1408.
  • Chen M-Y, Liao WS-L, Lu Z, Bornmann WG, Hennessey V, Washington MN, et al. Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer. 2011;117(19):4424–4438. doi:10.1002/cncr.26073.
  • Susanto JM, Colvin EK, Pinese M, Chang DK, Pajic M, Mawson A, et al. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2'deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo. Int J Oncol. 2015;46(5):2223–2230. doi:10.3892/ijo.2015.2894.
  • Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–107. doi:10.1038/5047.
  • Lemaire M, Momparler LF, Bernstein ML, Marquez VE, Momparler RL. Enhancement of antineoplastic action of 5-aza-2′-deoxycytidine by zebularine on L1210 leukemia. Anticancer Drugs. 2005;16(3):301–308. doi:10.1097/00001813-200503000-00009.
  • Stephan L, Momparler RL. Combination chemotherapy of cancer using the inhibitor of DNA methylation 5-aza-2′-deoxycytidine (decitabine). J Cancer Res Ther. 2015;3(6):56–65. doi:10.14312/2052-4994.2015-8.
  • Ott HM, Graves AP, Pappalardi MB, Huddleston M, Halsey WS, Hughes AM, et al. A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation. Mol Cancer Ther. 2014;13(12):3062–3073. doi:10.1158/1535-7163.MCT-13-0876.
  • Tiffen JC, Gunatilake D, Gallagher SJ, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6(29):27023–27036. doi:10.18632/oncotarget.4809.
  • Van Aller GS, Pappalardi MB, Ott HM, Diaz E, Brandt M, Schwartz BJ, et al. Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. ACS Chem Biol. 2013;9(3):622–629. doi:10.1021/cb4008748.
  • Momparler RL, Côté S, Momparler LF, Idaghdour Y. Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin Epigenet. 2014;6(1):19. doi:10.1186/1868-7083-6-19.
  • Momparler RL, Idaghdour Y, Marquez VE, Momparler LF. Synergistic antileukemic action of a combination of inhibitors of DNA methylation and histone methylation. Leuk Res. 2012;36(8):1049–1054. doi:10.1016/j.leukres.2012.03.001.
  • Mayr C, Wagner A, Loeffelberger M, Bruckner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7(1):745–758. doi:10.18632/oncotarget.6378.
  • Alzrigat M, Párraga AA, Majumder MM, Ma A, Jin J, Österborg A, et al. The polycomb group protein BMI-1 inhibitor PTC-209 is a potent anti-myeloma agent alone or in combination with epigenetic inhibitors targeting EZH2 and the BET bromodomains. Oncotarget. 2017;8(61):103731–103743. doi:10.18632/oncotarget.21909.
  • Cheng Y, He C, Wang M, Xuelei M, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(62):1–39.
  • Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm. 2013;10(1):337–352. doi:10.1021/mp3004622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.