52
Views
3
CrossRef citations to date
0
Altmetric
Article

On the Local Time of the Weighted Bootstrap and Compound Empirical Processes

&
Pages 609-629 | Received 03 Mar 2014, Accepted 26 Feb 2015, Published online: 24 Jun 2015

References

  • Alvarez-Andrade, S. 2008. Some asymptotic properties of the hybrids of empirical and partial-sum processes. Rev. Mat. Iberoam. 24(1):31–41.
  • Barbe, P., and Bertail, P. 1995. The Weighted Bootstrap, vol. 33. Lecture Notes in Statistics. New York: Springer-Verlag.
  • Bass, R.F., and Khoshnevisan, D. 1993. Rates of convergence to Brownian local time. Stoch. Proc. Appl. 47:197–213.
  • Bass, R.F., and Khoshnevisan, D. 1993. Strong approximations to Brownian local time. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), vol. 33, 43–65. Progr. Probab. Boston: Birkhäuser.
  • Bass, R.F., and Khoshnevisan, D. 1995. Laws of the iterated logarithm for local times of the empirical process. Ann. Probab. 23(1):388–399.
  • Berkes, I., and Philipp, W. 1979. Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7(1):29–54.
  • Chen, X. 2010. Random Walk Intersections, vol. 33. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.
  • Chen, X., and Khoshnevisan, D. 2009. From charged polymers to random walk in random scenery. In Optimality, vol. 33. IMS Lecture Notes Monograph Series. Beachwood, OH: Institute of Mathematics and Statistics, 237–251..
  • Csáki, E., Csörgö, M., Földes, A., and Révész, P. 1996. The local time of iterated Brownian motion. J. Theoret. Probab. 9(3):717–743.
  • Csörgö, M., and Horváth, L. 1993. Weighted Approximations in Probability and Statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: Wiley.
  • Csörgö, M., and Révész, P. 1981. Strong Approximations in Probability and Statistics. Probability and Mathematical Statistics. New York: Academic Press.
  • Csörgö, M., Shi, Z., and Yor, M. 1999. Some asymptotic properties of the local time of the uniform empirical process. Bernoulli 5(6):1035–1058.
  • Csörgö, M., Horváth, L., and Kokoszka, P. 2000. Approximation for bootstrapped empirical processes. Proc. Amer. Math. Soc. 128(8):2457–2464.
  • Dwass, M. 1961. Random crossings of cumulative distribution functions. Pacific J. Math. 11:127–134.
  • Efron, B. 1979. Bootstrap methods: another look at the jackknife. Ann. Statist. 7(1):1–26.
  • Ehm, W. 1981. Sample function properties of multiparameter stable processes. Z.Wahrsch. Verw. Gebiete 56(2):195–228.
  • Gäenssler, P., and Gutjahr, M. 1987. On computing exact Kolmogorov and Rényi type distributions. In Goodness-of-Fit (Debrecen, 1984), vol. 33, 155–174. Colloq. Math. Soc. János Bolyai, Amsterdam: North- Holland.
  • Helmers, R. 1997. A note on bootstrapping the local time of the empirical process. Statist. Decisions 15(3):295–300.
  • Horváth, L. 2000. Approximations for hybrids of empirical and partial sums processes. J. Statist. Plann. Inference 88(1):1–18.
  • Horváth, L., Kokoszka, P., and Steinebach, J. 2000. Approximations for weighted bootstrap processes with an application. Statist. Probab. Lett. 48(1):59–70.
  • Hu, Y., and Khoshnevisan, D. 2010. Strong approximations in a charged-polymer model. Period. Math. Hungar. 61(1–2):213–224.
  • Kesten, H. (1965). An iterated logarithm law for local time. Duke Math. J. 32:447–456.
  • Khoshnevisan, D. 1992. Level crossings of the empirical process. Stoch. Process. Appl. 43(2):331–343.
  • Khoshnevisan, D. 1993. An embedding of compensated compound Poisson processes with applications to local times. Ann. Probab. 21(1):340–361.
  • Komlós, J., Major, P., and Tusnády, G. 1975. An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32:111–131.
  • Maumy, M. 2002. Etude du processus empirique composé. Ph.D. Thesis, University of Paris VI.
  • Rémillard, B., and Scaillet, O. 2009. Testing for equality between two copulas. J. Multivariate Anal. 100(3):377–386.
  • Révész, P. 2005. Random Walk in Random and Non-Random Environments, 2nd ed. Hackensack, NJ: World Scientific.
  • Scaillet, O. 2005. A Kolmogorov-Smirnov type test for positive quadrant dependence. Canad. J. Statist. 33(3):415–427.
  • Shao, J., and Tu, D.S. 1995. The Jackknife and Bootstrap. Springer Series in Statistics. New York: Springer-Verlag.
  • Shorack, G.R., and Wellner, J.A. 1986. Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: Wiley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.