107
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion

Pages 600-612 | Received 16 Jan 2018, Accepted 25 Jan 2018, Published online: 12 Feb 2018

References

  • Bojdecki, T., Gorostiza, A. Talarczyk. (2004). Sub-fractional Brownian motion and its relation to occupation times. Statist. Probab. Lett. 69:405–419.
  • Diedhiou, A., Manga, C., Mendy, I. (2011). Parametric estimation for SDEs with additive sub-fractional Brownian motion. J. Numer. Math. Stochast. 3:37–45.
  • Dzhaparidze, K., Van Zanten, H. (2004). A series expansion of fractional Brownian motion. Probab. Theory Related Fields, 103:39–55.
  • El Machkouri, Mohammed, Es-Sebaiy, Khalifa, Ouknine, Youssef (2016). Least squares estimation for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, arXiv:1507.00802v2 [math.PR] 26 Sep 2016.
  • Feller, W. (1968). An Introduction to Probability Theory and its Applications, New York: Wiley.
  • Hall, P., Heyde, C. C. (1980). Martingale Limit Theory and its Applications. New York: Academic Press.
  • Ikeda, N., Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. Amsterdam: North-Holland.
  • Kleptsyna, M. L., Le Breton, A. (2002). Statistical analysis of the fractional Ornstein–Uhlenbeck type proces. Statist. Infer. Stoch. Proc., 5:229–248.
  • Kuang, N., Liu, B. (2015). Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation. Brazilian J. Probab. Statist., 29:778–789.
  • Kuang, N. H., Xie, H. T. (2015). Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk. Ann. Inst. Statist. Math., 67:75–91, doi:10.1007/s10463-013-0439-4.
  • Li, Z., Zhou, G., Luo, J. (2015). Stochastic delay evolution equations driven by sub-fractional Brownian motion. Adv. Diff. Equ. 2015:48, 17 pp.
  • Liptser, R. (1980). A strong law of large numbers. Stochastics, 3:217–228.
  • Liptser, R. S., Shiryayev, A. N. (1989). The Theory of Martingales. Dordrecht: Kluwer.
  • Mendy, I. (2009) A stochastic differential equation driven by a sub-fractional Brownian motion (Preprint).
  • Mendy, I. (2013). Parametric estimation for sub-fractional Ornstein–Uhlenbeck process. J. Stat. Plan. Infer. 143:663–674.
  • Michel, R., Pfanzagl, J. (1971). The accuracy of the normal approximation for minimum contrast estimate. Z. Wahr. verw Gebeite 18:73–84.
  • Prakasa Rao, B. L. S. (1999). Semimartingales and Their Statistical Inference. Boca Raton, FL: CRC Press.
  • Prakasa Rao, B. L. S. (2007). Instrumental variable estimation for linear stochastic differential equations driven by fractional Brownian motion. Stochastic Anal. Appl. 25:1203–1215.
  • Prakasa Rao, B. L. S. (2010). Statistical Inference for Fractional Diffusion Processes. London: Wiley.
  • Prakasa Rao, B. L. S. (2017a). On some maximal and integral inequalities for sub-fractional Brownian motion. Stochastic Anal. Appl. 35:279–287.
  • Prakasa Rao, B. L. S. (2017b). Optimal estimation of a signal perturbed by a sub-fractional Brownian motion. Stochastic Anal. Appl. 35:533–541.
  • Prakasa Rao, B. L. S. (2017c). Parameter estimation for linear stochastic differential equations driven by sub-fractional Brownian motion. Random Oper. Stoch. Equ. 25:235-248.
  • Prakasa Rao, B. L. S. (2017d). Instrumental variable estimation for linear stochastic differential equations driven by mixed fractional Brownian motion. Stochastic Anal. Appl. 35:943–953.
  • Shen, G. J., Yan, L. T. (2014). Estimators for the drift of sub-fractional Brownian motion. Commun. Statist.Theory Method. 43:1601–1612.
  • So, B. S. (2005). A new instrumental variable estimation for diffusion processes. Ann. Inst. Statist. Math. 57:733–745.
  • Tudor, C. (2007). Some properties of the sub-fractional Brownian motion. Stochastics 79:431–448.
  • Tudor, C. (2007). Prediction and linear filtering with sub-fractional Brownian motion, Preprint.
  • Tudor, C. (2008). Some aspects of stochastic calculus for the sub-fractional Brownian motion. Analele Universitat ii Bucaresti, Matematica, Anul LVII, pp. 199–230.
  • Tudor, C. (2009). On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351:456–468.
  • Yan, L., Shen, G., He, K. (2011). Ito's formula for a sub-fractional Brownian motion. Commun. Stochastic Anal. 5:135–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.