1,568
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Representations for conditional expectations and applications to pricing and hedging of financial products in Lévy and jump-diffusion setting

, &
Pages 281-319 | Received 02 Nov 2016, Accepted 06 Dec 2018, Published online: 19 Mar 2019

References

  • Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L. (2001). Applications of Malliavin calculus to Monte Carlo methods in finance II. Finance Stochast. 5(2):201–236. DOI: 10.1007/PL00013529.
  • Montero, M., Kohatsu-Higa, A. (2003). Malliavin calculus applied to finance. Physica A Statis. Mech. Appl. 320:548–570. DOI: 10.1016/S0378-4371(02)01531-5.
  • Nualart, D. (2006). The Malliavin Calculus and Related Topics. Berlin, Germany: Springer.
  • Di Nunno, G., Meyer-Brandis, T., Øksendal, B., Proske, F. (2005). Malliavin calculus and anticipative itô formulae for lévy processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8(2):235–258. DOI: 10.1142/S0219025705001950.
  • von Sydow, L., Josef Höök, L., Larsson, E., Lindström, E., Milovanović, S., Persson, J., Shcherbakov, V., Shpolyanskiy, Y., Sirén, S., Toivanen, J., et al., Zhao, Y. (2015). BENCHOP-the BENCH marking project in option pricing. Int. J. Comput. Math. 92(12):2361–2379. DOI: 10.1080/00207160.2015.1072172.
  • Broadie, M., Glasserman, P. (1997). Pricing American-style securities using simulation. J. Econ. Dynam. Control 21(8-9):1323–1352. DOI: 10.1016/S0165-1889(97)00029-8.
  • Barraquand, J., Martineau, D. (1995). Numerical valuation of high dimensional multivariate American securities. J. Finance Quantitative Anal. 30(3):383–405. DOI: 10.2307/2331347.
  • Longstaff, F. A., Schwartz, E. S. (2001). Valuing American options by simulations: a simple least squares approach. Rev. Finan. Stud. 14(1):113–148. DOI: 10.1093/rfs/14.1.113.
  • Shu, J., Gu, Y., Zheng, W. (2002). A novel numerical approach of computing American option. Int. J. Found. Comput. Sci. 13(05):685–693. DOI: 10.1142/S0129054102001394.
  • Kovalov, P., Linetsky, V., Marcozzi, M. (2007). Pricing multi-asset American options: a finite element method-of-lines with smooth penalty. J. Sci. Comput. 33(3):209–237. DOI: 10.1007/s10915-007-9150-z.
  • Zhang, B., Oosterlee, C. W. (2012). Fourier cosine expansions and put–call relations for Bermudan options. In: Carmona, A. R., Del Moral, P., Hu, P., and Oudjane, N., (eds.). Numerical Methods in Finance: Bordeaux. Berlin: Springer, pp. 323–350.
  • Mrad, M., Touzi, N., Zeghal, A. (2006). Monte Carlo estimation of a joint density using Malliavin calculus, and application to American options. Comput. Econ. 27(4):497–531. DOI: 10.1007/s10614-005-9005-3.
  • Bally, V., Pagès, G. (2003). Error analysis of the quantization algorithm for obstacle problems. Stochastic Process. Appl. 106(1):1–40. DOI: 10.1016/S0304-4149(03)00026-7.
  • Benth, F. E., Di Nunno, G., Khedher, A. (2010). Lévy models robustness and sensitivity. In QP-PQ: Quantum Probability and White Noise Analysis, Proceedings of the 29th Conference in Hammamet, Tunisia, 1318 October 2008. H. Ouerdiane and A Barhoumi (eds.). 25:153–184.
  • Petrou, E. (2008). Malliavin calculus in lévy spaces and applications to finance. Electron. J. Probab. 13(0):852–879. DOI: 10.1214/EJP.v13-502.
  • Davis, M. H. A., Johansson, M. P. (2006). Malliavin Monte Carlo Greeks for jump-diffusions. Stochastic Process. Appl. 116(1):101–129. DOI: 10.1016/j.spa.2005.08.002.
  • Benth, F. E., Di Nunno, G., Khedher, A. (2011). Robustness of option prices and their deltas in markets modelled by jump-diffusions. Commun. Stochastic Anal. 5(2):285–307.
  • Abbas-Turki, L. A., Lapeyre, B. (2012). American options by Malliavin calculus and nonparametric variance and bias reduction methods. SIAM J. Finan. Math. 3(1):479–510. DOI: 10.1137/11083890X.
  • Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Berlin: Springer.
  • Baldeaux, J. (2008). Quasi-Monte Carlo methods for the Kou model. Monte Carlo Methods Appl. 14(4):281–302.
  • Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. J. Finan. Econ. 3(1-2):125–144. DOI: 10.1016/0304-405X(76)90022-2.
  • Bouchard, B., Warin, X. (2012). Monte-Carlo valuation of American options: Facts and new algorithms to improve existing methods. Num. Meth. Finan. Springer Proceedings in Mathematics 12:215–255.
  • Mostovyi, O. (2013). On the stability the least squares Monte Carlo. Optim. Lett. 7(2):259–265. DOI: 10.1007/s11590-011-0414-z.
  • Protter, P. (2005). Stochastic Integration and Differential Equations. 2nd edn, Version 2.1. No. 21 in Stochastic Modelling and Applied Probability. Berlin: Springer.
  • Raju, C. K. (1982). Products and compositions with the Dirac Delta function. J. Phys. A Math. Gen. 15(2):381–396. DOI: 10.1088/0305-4470/15/2/011.
  • Daveloose, C. (2016). Essays on Pricing and Hedging in Markets with Imperfections. Ph.D. thesis, Ghent University.
  • Benth, F. E., Kallsen, J., Meyer-Brandis, T. (2007). A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing. Appl. Math. Finance 14(2):153–169. DOI: 10.1080/13504860600725031.
  • Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. No. 68 in Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.
  • Barndorff-Nielsen, O. E., Shephard, N. (2001). Modelling by Lévy processes for financial econometrics. Barndorff-Nielsen, O., Mikosch, T., and Resnick, S. (eds.), Lévy Processes: Theory and Applications. Basel, Switzerland: Birkhäuser, pp. 283–318.
  • Brewer, D. W., Tubbs, J. D., Smith, O. E. (1987). A differential equations approach to the modal location for a family of bivariate gamma distributions. J. Multivariate Anal. 21(1):53–66. DOI: 10.1016/0047-259X(87)90098-4.
  • Bowman, F. (1958). Introduction to Bessel Functions. New York: Dover Publications Inc.
  • Solé, J. L., Utzet, F., Vives, J. (2007). Canonical Lévy process and Malliavin calculus. Stochastic Process. Appl. 117(2):165–187. DOI: 10.1016/j.spa.2006.06.006.
  • Ikeda, N., Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. New York: Elsevier Science.
  • Bates, D. (1996). Jumps and stochastic volatility: exchange rate processes implicit in Deutsche Mark options. Rev. Finan. Stud. 9(1):69–107. DOI: 10.1093/rfs/9.1.69.
  • Barndorff-Nielsen, O. E., Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. Royal Stat. Soc. B 64(2):253–280. DOI: 10.1111/1467-9868.00336.
  • Martynov, M., Rozanova, O. (2013). On dependence of volatility on return for stochastic volatility models. Stochastics 85(5):917–927. DOI: 10.1080/17442508.2012.673616.
  • van der Stoep, A. W., Grzelak, L. A., Oosterlee, C. W. (2014). The Heston stochastic-local volatility model: efficient Monte Carlo simulation. Int. J. Theor. Appl. Finan. 17(7):14050045.
  • Moreni, N. (2004). A variance reduction technique for American option pricing. Physica A Statis. Mech. Appl. 338(1-2):292–295. DOI: 10.1016/j.physa.2004.02.055.
  • Bally, V., Caramellino, L., Zanette, A. (2005). Pricing American options by Monte Carlo methods using a Malliavin calculus approach. Monte Carlo Methods Appl. 11:97–133.
  • Kohatsu-Higa, A., Pettersson, R. (2002). Variance reduction methods for simulation of densities on wiener space. SIAM J. Numer. Anal. 40(2):431–450. DOI: 10.1137/S0036142901385507.
  • Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.
  • Amin, K. I. (1993). Jump diffusion option valuation in discrete time. J. Finan. 48(5):1833–1863. DOI: 10.2307/2329069.
  • Karatzas, I., Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Berlin: Springer.
  • Kou, S. (2002). A jump-diffusion model for option pricing. Manag. Sci. 48(8):1086–1101. DOI: 10.1287/mnsc.48.8.1086.166.
  • Hilliard, J., Schwartz, A. (2005). Pricing European and American derivatives under a jump-diffusion process: a bivariate tree approach. J. Finan. Quant. Anal. 40(03):671–691.
  • Zhou, Y. (2004). On the existence of an optimal regression complexity in the Least-Squares Monte Carlo (LSM) framework for options pricing. 39th Actuarial Research Conference, Iowa Memorial Union, The University of Iowa, Iowa City, April.
  • Plavsic, M. (2011). Pricing American options - aspects of computation. Ph.D. thesis, Imperial College London.
  • Benth, F. E., Kallsen, J., Meyer‐Brandis, T. (2007). A critical empirical study of two electricity spot price modeling and derivatives pricing. Appl. Math. Finance 14(2):153–169. DOI: 10.1080/13504860600725031.