137
Views
0
CrossRef citations to date
0
Altmetric
Articles

Non-linear expectations in spaces of Colombeau generalized functions

&
Pages 509-521 | Received 07 Feb 2019, Accepted 09 Feb 2019, Published online: 14 Mar 2019

References

  • Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Econ 3:637–654. DOI:10.1086/260062.
  • Avellaneda, M. (1997). An introduction to option pricing and the mathematical theory of risk. Seminario Mat. Fis. Milano. 67(1):225–250. DOI:10.1007/BF02930502.
  • Avellaneda, M., Levy, A., Paras, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance. 2(2):73–88. DOI:10.1080/13504869500000005.
  • Avellaneda, M., Paras, A. (1996). Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model. Appl. Math. Finance. 3(1):21–52. DOI:10.1080/13504869600000002.
  • Lyons, T. J. (1995). Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance. 2(2):117–133. DOI:10.1080/13504869500000007.
  • Epstein, L. G., Ji, S. (2013). Ambiguous volatility and asset pricing in continuous time. Rev. Financ. Stud. 26(7):1740–1786. DOI:10.1093/rfs/hht018.
  • Peng, S. (2005). Nonlinear expectations and nonlinear markov chains. Chin. Annal. Math. 26(02):159–184. DOI:10.1142/S0252959905000154.
  • Peng, S., et. al. (2006). G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In: Benth., ed. Proceedings of the 2005 Abel Symposium. New York: Springer-Verlag, pp. 541–567.
  • Peng, S. (2008). Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl. 118(12):2223–2253. DOI:10.1016/j.spa.2007.10.015.
  • Peng, S. (2009). Survey on normal distributions, Central limit theorem, brownian motion and the related stochastic calculus under sublinear expectations. Sci. China Ser. A Math. 52(7):1391–1411. DOI:10.1007/s11425-009-0121-8.
  • Peng, S. (2010). Nonlinear expectations and stochastic calculus under uncertaintywith robust Central limit theorem and G-Brownian motion. arXiv:1002.4546v1
  • Denis, L., Martini, C. (2006). A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2):827–852. DOI:10.1214/105051606000000169.
  • Denis, L., Hu, M., Peng, S. (2011). Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths. Potential Anal. 34(2):139–161. DOI:10.1007/s11118-010-9185-x.
  • Soner, M., Touzi, N., Zhang, J. (2011). Martingale representation theorem under G-expectation. Stochastic Process. Appl. 121(2):265–287.
  • Ushii, H. (1995). On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkcial. Ekvac. 38:101–120.
  • El Karoui, N., Peng, S., Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance. 7(1):1–71. DOI:10.1111/1467-9965.00022.
  • Peng, S. (2010). Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians, Vol. 1. New Delhi: Hindustan Book Agency, pp. 393–432.
  • Hu, M., Ji, S., Peng, S., Song, Y. (2014). Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl. 124(1):759–784. DOI:10.1016/j.spa.2013.09.010.
  • Hu, M., Ji, S., Peng, S., Song, Y. (2014). Comparison theorem, Feynman-Kac formula and girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Process. Appl. 124(2):1170–1195. DOI:10.1016/j.spa.2013.10.009.
  • Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R. (2001). Geometric Theory of Generalized Functions with Applications to General Relativity. Dordrecht: Kluwer.
  • Colombeau, J.-F. (1984). New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam.
  • Colombeau, J.-F. (1985). Elementary Introduction to New Generalized Functions. North Holland Mathematical Studies, Vol. 113. Amsterdam: North Holland.
  • Colombeau, J.-F. (1992). Multiplication of the distributions – a tool in mathematics, numerical engineering and theoretical physics. In: Lecture Notes in Mathematics, Vol. 1532. Berlin: Springer.
  • Colombeau, J.-F., Heibig, A. (1994). Generalized solutions to cauchy problems. Monatsh. Math. 117(1–2):33–49. DOI:10.1007/BF01299310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.