225
Views
2
CrossRef citations to date
0
Altmetric
Articles

Averaging principle for stochastic 3D fractional Leray-α model with a fast oscillation

&
Pages 248-276 | Received 29 Apr 2019, Accepted 01 Nov 2019, Published online: 12 Nov 2019

References

  • Cheskidov, A., Holm, D. D., Olson, E., Titi, E. S. (2005). On a Leray-α model of turbulence. Proc. R Soc. A 461(2055):629–649. DOI: 10.1098/rspa.2004.1373.
  • Fernando, P. W., Hausenblas, E., Razafimandimby, P. A. (2016). Irreducibility and exponential mixing of some stochastic hydrodynamical systems driven by pure jump noise. Commun. Math. Phys. 348(2):535–565. DOI: 10.1007/s00220-016-2693-9.
  • Olson, E., Titi, E. S. (2007). Viscosity versus vorticity stretching: global well-posedness for a family of Navier-Stokes-alpha-like models. Nonlinear Anal. 66(11):2427–2458. DOI: 10.1016/j.na.2006.03.030.
  • Leray, J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63:193–248. DOI: 10.1007/BF02547354.
  • Chepyzhov, V. V., Titi, E. S., Vishik, M. I. (2007). On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system. Discrete Contin. Dyn. Syst. 17(3):481–500. DOI: 10.3934/dcds.2007.17.481.
  • Lions, J. L. (1969). Quelques méthodes de résolution des problemes aux limites non linéaires. Paris: Dunod.
  • Ali, H. (2013). On a critical Leray-α model of turbulence. Nonlinear Anal. 14(3):1563–1584. DOI: 10.1016/j.nonrwa.2012.10.019.
  • Barbato, D., Morandin, F., Romito, M. (2015). Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system. Anal. PDE 7(8):2009–2027. DOI: 10.2140/apde.2014.7.2009.
  • Pennington, N. (2016). Global solutions to the generalized Leray-alpha equation with mixed dissipation terms. Nonlinear Anal. 136:102–116. DOI: 10.1016/j.na.2016.02.006.
  • Yamazaki, K. (2012). On the global regularity of generalized Leray-alpha type models. Nonlinear Anal. 75(2):503–515. DOI: 10.1016/j.na.2011.08.051.
  • Ferrario, B. (2016). Characterization of the law for 3D stochastic hyperviscous fluids. Electron. J. Probab. 21:22. DOI: 10.1214/16-EJP4607.
  • Röckner, M., Zhu, R., Zhu, X. (2014). Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise. Stoch. Process. Appl. 124(5):1974–2002. DOI: 10.1016/j.spa.2014.01.010.
  • Wang, F.-Y., Xu, L. (2012). Derivative formula and applications for hyperdissipative stochastic Navier–Stokes/Burgers equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(3):1250020. DOI: 10.1142/S0219025712500208.
  • Chueshov, I., Millet, A. (2010). Stochastic 2D hydrodynamical type systems: Well posedness and large deviations. Appl. Math. Optim. 61(3):379–420.
  • Deugoue, G., Sango, M. (2010). On the strong solution for the 3D stochastic Leray-alpha model. Bound. Value Probl. 2010(1):723018. DOI: 10.1155/2010/723018.
  • Bessaih, H., Hausenblas, E., Razafimandimby, P. A. (2015). Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type. Nonlinear Differ. Equ. Appl. 22(6):1661–1697. DOI: 10.1007/s00030-015-0339-9.
  • Anh, C. T., Da, N. T. (2017). The exponential behaviour and stabilizability of stochastic 2D hydrodynamical type systems. Stochastics 89(3–4):593–618. DOI: 10.1080/17442508.2016.1269767.
  • Yang, J., Zhai, J. (2017). Asymptotics of stochastic 2D hydrodynamical type systems in unbounded domains. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20(3):1750017. DOI: 10.1142/S0219025717500175.
  • Li, S., Liu, W., Xie, Y. (2018). Stochastic 3D Leray-α model with fractional dissipation. arXiv 1805.11939.
  • Li, S., Liu, W., Xie, Y. (2019). Large deviations for stochastic 3D Leray-α model with fractional dissipation. Commun. Pure Appl. Anal. 18(5):2491–2509. DOI: 10.3934/cpaa.2019113.
  • Li, S., Liu, W., Xie, Y. (2019). Ergodicity of 3D Leray-α model with fractional dissipation and degenerate stochastic forcing. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22(1):1950002. DOI: 10.1142/S0219025719500024.
  • Li, S., Liu, W., Xie, Y. (2019). Exponential mixing for stochastic 3D fractional Leray-α model with degenerate multiplicative noise. Appl. Math. Lett. 95:1–6. DOI: 10.1016/j.aml.2019.03.014.
  • Flandoli, F. (2015). A stochastic view over the open problem of well-posedness for the 3D Navier–Stokes equations. In: Dalang, R., Dozzi, M., Flandoli, F., Russo, F., eds. Stochastic Analysis: A Series of Lectures. Basel: Springer, pp. 221–246.
  • Fu, H., Wan, L., Liu, J., Liu, X. (2018). Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stoch. Process. Appl. 128(8):2557–2580. DOI: 10.1016/j.spa.2017.09.021.
  • Gao, P. (2018). Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete Contin. Dyn. Syst. A 38(11):5649–5684.
  • Gao, P. (2018). Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation. J. Stat. Phys. 171(5):897–926. DOI: 10.1007/s10955-018-2048-3.
  • Gao, P. (2019). Averaging principle for multiscale stochastic Klein–Gordon-Heat system. J. Nonlinear Sci. 29(4):1701–1759. DOI: 10.1007/s00332-019-09529-4.
  • Harvey, E., Kirk, V., Wechselberger, M., Sneyd, J. (2011). Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci. 21(5):639. DOI: 10.1007/s00332-011-9096-z.
  • Hooper, A. P., Grimshaw, R. (1985). Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28(1):37–45. DOI: 10.1063/1.865160.
  • Mastny, E. A., Haseltine, E. L., Rawlings, J. B. (2007). Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127(9):094106. DOI: 10.1063/1.2764480.
  • Mikikian, M., Cavarroc, M., Couëdel, L., Tessier, Y., Boufendi, L. (2008). Mixed-mode oscillations in complex-plasma instabilities. Phys. Rev. Lett. 100(22):225005. DOI: 10.1103/PhysRevLett.100.225005.
  • E, W., Engquist, B. (2003). Multiscale modeling and computation. Not. AMS 50(9):1062–1070.
  • Bogoliubov, N., Mitropolsky, Y. (1961). Asymptotic Methods in the Theory of Non-Linear Oscillations. Delhi: Hindustan Publishing Corporation. DOI: 10.1063/1.3050754.
  • Simon, H. A., Ando, A. (1961). Aggregation of variables in dynamic systems. Econometrica 29(2):111–138. DOI: 10.2307/1909285.
  • Bertram, R., Rubin, J. E. (2017). Multi-timescale systems and fast-slow analysis. Math. Biosci. 287:105–121. DOI: 10.1016/j.mbs.2016.07.003.
  • Wu, F., Tian, T., Rawlings, J. B., Yin, G. (2016). Approximate method for stochastic chemical kinetics with two-time scales by chemical langevin equations. J. Chem. Phys. 144(17):174112. DOI: 10.1063/1.4948407.
  • Khasminskij, R. (1968). On the principle of averaging the Itô’s stochastic differential equations. Kybernetika 4(3):260–279.
  • Givon, D., Kevrekidis, I. G., Kupferman, R. (2006). Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems. Commun. Math. Sci. 4(4):707–729. DOI: 10.4310/CMS.2006.v4.n4.a2.
  • Xu, J., Liu, J., Miao, Y. (2018). Strong averaging principle for two-time-scale sdes with non-Lipschitz coefficients. J. Math. Anal. Appl. 468(1):116–140. DOI: 10.1016/j.jmaa.2018.07.039.
  • Xu, Y., Pei, B., Wu, J.-L. (2017). Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion. Stoch. Dyn. 17(2):1750013. DOI: 10.1142/S0219493717500137.
  • Cerrai, S. (2009). A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Probab. 19(3):899–948. DOI: 10.1214/08-AAP560.
  • Cerrai, S., Freidlin, M. (2009). Averaging principle for a class of stochastic reaction–diffusion equations. Probab. Theory Relat. Fields 144(1–2):137–177. DOI: 10.1007/s00440-008-0144-z.
  • Cerrai, S., Lunardi, A. (2017). Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations: the almost periodic case. SIAM J. Math. Anal. 49(4):2843–2884.
  • Dong, Z., Sun, X., Xiao, H., Zhai, J. (2018). Averaging principle for one dimensional stochastic burgers equation. J. Differ. Equ. 265(10):4749–4797. DOI: 10.1016/j.jde.2018.06.020.
  • Li, S., Sun, X., Xie, Y., Ying, Z. (2018). Averaging principle for two dimensional stochastic Navier-Stokes equations. arXiv:1810.02282.
  • Bréhier, C.-E. (2018). Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component. arXiv:1810.06448.
  • Bao, J., Yin, G., Yuan, C. (2017). Two-time-scale stochastic partial differential equations driven by α-stable noises: averaging principles. Bernoulli 23(1):645–669. DOI: 10.3150/14-BEJ677.
  • Bréhier, C.-E. (2012). Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122(7):2553–2593. DOI: 10.1016/j.spa.2012.04.007.
  • Fu, H., Wan, L., Liu, J. (2015). Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stoch. Process. Appl. 125(8):3255–3279. DOI: 10.1016/j.spa.2015.03.004.
  • Wang, W., Roberts, A., Duan, J. (2012). Large deviations and approximations for slow-fast stochastic reaction-diffusion equations. J. Differ. Equ. 253(12):3501–3522. DOI: 10.1016/j.jde.2012.08.041.
  • Temam, R., Lions, J., Papanicolaou, G., Rockafellar, R. (2016). Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications. Amsterdam: Elsevier Science.
  • Liu, W., Röckner, M. (2015). Stochastic Partial Differential Equations: An Introduction. Universitext. Cham: Springer International Publishing,
  • Prévôt, C., Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics. Berlin: Springer.
  • Prato, G. D., Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press,
  • Chueshov, I., Millet, A. (2011). Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem. Stoch. Anal. Appl. 29(4):570–611.
  • Ma, T., Zhu, R. (2019). Wong-Zakai approximation and support theorem for spdes with locally monotone coefficients. J. Math. Anal. Appl. 469(2):623–660. DOI: 10.1016/j.jmaa.2018.09.031.
  • Duan, J., Millet, A. (2009). Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl. 119(6):2052–2081. DOI: 10.1016/j.spa.2008.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.