80
Views
1
CrossRef citations to date
0
Altmetric
Article

Wong-Zakai approximations and attractors for non-autonomous stochastic FitzHugh-Nagumo system on unbounded domains

, &
Pages 854-890 | Received 15 Apr 2021, Accepted 08 Aug 2021, Published online: 02 Sep 2021

References

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6):445–466.
  • Nagumo, J., Arimoto, S., Yosimzawa, S. (1964). An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50:2061–2070.
  • Ruelle, D. (1984). Characteristic exponents for a viscous fluid subjected to time dependent forces. Commun. Math. Phys. 93(3):285–300. DOI: 10.1007/BF01258529.
  • Marion, M. (1989). Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems. SIAM J. Math. Anal. 20(4):816–844. DOI: 10.1137/0520057.
  • Marion, M. (1989). Inertial manifolds associated to partly dissipative reaction-diffusion systems. J. Math. Anal. Appl. 143(2):295–326. DOI: 10.1016/0022-247X(89)90043-7.
  • Shao, Z. (1998). Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions. J.Differ. Equations 144(1):1–43. DOI: 10.1006/jdeq.1997.3383.
  • Adili, A., Wang, B. (2013). Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Discrete Contin. Dyn. Syst.
  • Adili, A., Wang, B. (2013). Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete Contin. Dyn. Syst. Ser. B. 18:643–666.
  • Wang, B. (2009). Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains. Nonlinear Anal.: Theory Methods Appl. 71(7–8):2811–2828. DOI: 10.1016/j.na.2009.01.131.
  • Zhou, S., Wang, Z. (2016). Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise. J. Math. Anal. Appl. 441(2):648–667. DOI: 10.1016/j.jmaa.2016.04.038.
  • Guo, C., Chen, Y., Shu, J., Yang, X. (2021). Dynamical behaviors of non-autonomous fractional FitzHugh-Nagumo system driven by addtive noise in undounded domains. Front. Math. China 16(1):59–93. DOI: 10.1007/s11464-021-0896-7.
  • Flandoli, F. (1995). Regularity Theory and Stochastic Flow for Parabolic SPDEs, Stochastics Monographs, Vol. 9. Singapore: Gordon and Breach Science Publishers.
  • Garrido-Atienza, M., Lu, K., Schmalfuss, B. (2016). Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters H∈(1/3,1/2]. SIAM J. Appl. Dyn. Syst. 15(1):625–654.
  • Gao, H., Garrido-Atienza, M., Schmalfuss, B. (2014). Random attractors for stochastic evolution equations driven by fractional Brownian motion. SIAM J. Math. Anal. 46(4):2281–2309. DOI: 10.1137/130930662.
  • Arnold, L. (1998). Random Dynamical Systems. Berlin: Springer.
  • Wong, E., Zakai, M. (1965). On the relation between ordinary and stochastic diferetnial equations. Int. J. Eng.Sci. 3:213–229.
  • Wong, E., Zakai, M. (1965). On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36(5):1560–1564. DOI: 10.1214/aoms/1177699916.
  • McShane, E.J. (1972). Stochastic differential equations and models of random processes. Dissertation, Springer, Berlin.
  • Stroock, D.W., Varadhan, S.R.S. (1972). On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3, pp. 333–359.
  • Sussmann, H.J. (1977). An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point. Bull. Amer. Math. Soc. 83(2):296–298. DOI: 10.1090/S0002-9904-1977-14312-7.
  • Sussmann, H.J. (1978). On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6(1):19–41. DOI: 10.1214/aop/1176995608.
  • Ikeda, N., Nakao, S., Yamato, Y. (1977). A class of approximations of Brownian motion. Publ. Res. Inst. Math. Sci. 13(1):285–300. DOI: 10.2977/prims/1195190109.
  • Ikeda, N., Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes. 2nd ed. Amsterdam: Noth-Holland.
  • Kelley, D., Melbourne, I. (2016). Smooth approximation of stochastic differential equations. Ann. Probab. 44:479–520.
  • Shen, J., Lu, K., Zhang, W. (2013). Heteroclinic chaotic behavior driven by a Brownian motion. J. Differential Equations. 255(11):4185–4225. DOI: 10.1016/j.jde.2013.08.003.
  • Nakao, S., Yamato, Y. (1976). Approximation theorem on stochastic differential equations. In: Proceedings of the International Symposium on SDE, Kyoto, p. 283–296.
  • Konecny, F. (1983). On Wong-Zakai approximation of stochastic differential equations. J. Multivar. Anal. 13(4):605–611. DOI: 10.1016/0047-259X(83)90043-X.
  • Protter, P. (1985). Approximations of solutions of stochastic differential equations driven by semimartingales. Ann. Probab. 13:716–743.
  • Nakao, S. (1986). On weak convergence of sequences of continuous local martingale. Ann. De LI. H. P. Sect. B. 22:371–380.
  • Kurtz, T., Protter, P. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19(3):1035–1070. DOI: 10.1214/aop/1176990334.
  • Kurtz, T., Protter, P. (1991). Wong-Zakai corrections, random evolutions, and simulation schemes for SDE. In: Mayer-Wolf, E., Merzbach, E., Shwartz, A., eds. Stochastic Analysis: Liber Amicorum for Moshe Zakai. San Diego, CA: Academic Press, pp. 331–346.
  • BrzeŹniak, Z., Capiński, M., Flandoli, F. (1988). A convergence result for stochastic partial differential equations. Stochastics 24(4):423–445. DOI: 10.1080/17442508808833526.
  • Gyongy, I., Shmatkov, A. (2006). Rate of convergence of Wong-Zakai approximations for stochastic partial differential equations. Appl. Math. Optim. 54(3):315–341. DOI: 10.1007/s00245-006-0873-2.
  • Gyongy, I. (1988). On the approximation of stochastic partial differential equations I. Stochastics. 25:59–85.
  • Gyongy, I. (1989). On the approximation of stochastic partial differential equations II. Stochastics. 26:129–164.
  • Twardowska, K. (1991). On the approximation theorem of the Wong-Zakai type for the functional stochastic differential equations. Probab. Math. Stat. 12(2):319–334.
  • Twardowska, K. (1992). An extension of the Wong-Zakai theorem for stochastic evolution equations in Hilbert spaces. Stoch. Anal. Appl. 10(4):471–500. DOI: 10.1080/07362999208809284.
  • Twardowska, K. (1995). An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations. Stoch. Anal. Appl. 13(5):601–626. DOI: 10.1080/07362999508809419.
  • Twardowska, K. (1996). Wong-Zakai approximations for stochastic differential equations. Acta Appl. Math. 43(3):317–359. DOI: 10.1007/BF00047670.
  • Bally, V., Millet, A., Sanz-Sol, M. (1995). Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations. Ann. Probab. 23(1):178–222. DOI: 10.1214/aop/1176988383.
  • Brzeźniak, Z., Flandoli, F. (1995). Almost sure approximation of Wong-Zakai type for stochastic partial differential equations. Stochastic Process. Appl. 55(2):329–358. DOI: 10.1016/0304-4149(94)00037-T.
  • Grecksch, W., Schmalfuss, B. (1996). Approximation of the stochastic Navier-Stokes equation. Mat. Apl. Com- Put. 15(3):227–239.
  • Nowak, A. (2006). A Wong-Zakai type theorem for stochastic systems of Burgers equations. Panam. Math. J. 16(2):1–25.
  • Tessitore, G., Zabczyk, J. (2006). Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equations 6(4):621–655. DOI: 10.1007/s00028-006-0280-9.
  • Deya, A., Jolis, M., Quer-Sardanyons, L. (2013). The Stratonovich heat equation: a continuity result and weak approximations. Electron. J. Probab. 18:1–34. DOI: 10.1214/EJP.v18-2004.
  • Ganguly, A. (2013). Wong-ZaKai type convergence in infinite dimensions. Electron. J. Probab. 18:34. DOI: 10.1214/EJP.v18-2650.
  • Hairer, M., Pardoux, E. (2015). A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67(4):1551–1604.
  • Lu, K., Wang, Q. (2011). Chaotic behavior in differential equations driven by a Brownian motion. J. Differ. Equations 251(10):2853–2895. DOI: 10.1016/j.jde.2011.05.032.
  • Lu, K., Wang, B. (2019). Wong-Zakai approximations and long term behavior of stochastic partial differential equations. J. Dynam. Differ. Equations. 31:1341–1371.
  • Wang, X., Lu, K., Wang, B. (2018). Wong-Zakai approximations and attractors for stochastic reaction-diffsion equations on unbounded domains. J. Differ. Equations 264(1):378–424. DOI: 10.1016/j.jde.2017.09.006.
  • Crauel, H., Flandoli, F. (1994). Attractors for random dynamical systems. Probab. Theory Related Fields 100(3):365–393. DOI: 10.1007/BF01193705.
  • Flandoli, F., Schmalfuss, B. (1996). Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise. Stoch. Stoch. Rep. 59(1–2):21–45. DOI: 10.1080/17442509608834083.
  • Schmalfuss, B. (1992). Backward cocycles and attractors of stochastic differential equations. In: V. Reitmann, T. Riedrich, N. Koksch, eds. International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior. Dresden: Technische Universitat, pp. 185–192.
  • Caraballo, T., Langa, J.A., Melnik, V.S., Valero, J. (2003). Pullback attractors for nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. 11(2):153–201. DOI: 10.1023/A:1022902802385.
  • Wang, B. (2012). Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differential Equations. 253(5):1544–1583. DOI: 10.1016/j.jde.2012.05.015.
  • Wang, B. (2014). Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete Contin. Dyn. Syst. Ser. A 34(1):269–300. DOI: 10.3934/dcds.2014.34.269.
  • Wang, B. (2014). Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations. Nonlinear Anal.: Theory Methods Appl. 103:9–25. DOI: 10.1016/j.na.2014.02.013.
  • Qin, L., Ma, D., Shu, J. Wong-Zakai approximations and limiting dynamics of stochastic FitzHugh-Nagumo system.
  • Qin, L., Ma, D., Shu, J. (2021). Wong-Zakai approximations and long term behavior of stochastic FitzHugh-Nagumo system. Int. J. Biomath. 14(03):2150008. DOI: 10.1142/S179352452150008X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.