359
Views
11
CrossRef citations to date
0
Altmetric
Articles

Liquid–Liquid Extraction of Lithium Ions Using a Slug Flow Microreactor: Effect of Extraction Reagent and Microtube Material

, , , &

References

  • Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A review on passive and active mixing principles. Chem. Eng. Sci. 2005, 60, 2479–2501. doi:10.1016/j.ces.2004.11.033
  • Wong, S.H.; Ward, M.C.L.; Wharton, C.W. Micro T-mixer as a rapid mixing micromixer. Sens. Actuators, B 2004, 100, 359–379. doi:10.1016/j.snb.2004.02.008
  • Dummann, G.; Quittmann, U.; Gröschel, L.; Agar, D.W.; Wörz, O.; Morgenschweis, K. The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions. Catal. Today 2003, 79–80, 433–439. doi:10.1016/S0920-5861(03)00056-7
  • Mills, P.L.; Quiram, D.J.; Ryley, J.F. Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 2007, 62, 6992–7010. doi:10.1016/j.ces.2007.09.021
  • Kashid, M.N.; Harshe, Y.M.; Agar, D.W. Liquid−liquid slug flow in a capillary: An alternative to suspended drop or film contactors. Ind. Eng. Chem. Res. 2007, 46, 8420–8430. doi:10.1021/ie070077x
  • Sotowa, K.-I. Fluid behavior and mass transport characteristics of gas–liquid and liquid–liquid flows in microchannels. J. Chem. Eng. Jpn. 2014, 47, 213–224. doi:10.1252/jcej.13we141
  • Ufer, A.; Mendorf, M.; Ghaini, A.; Agar, D.W. Liquid/liquid slug flow capillary microreactor, Chem. Eng. Technol. 2011, 34, 353–360. doi:10.1002/ceat.201000334
  • Richa, K.; Babbitt, C.W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. doi:10.1016/j.resconrec.2013.11.008
  • Niinae, M.; Suzuki, T.; Nakamura, T.; Shibata, J. Separation of cobalt and lithium from chloride and sulfate solutions by solvent extraction. Resour. Process. 2010, 57, 141–145. doi:10.4144/rpsj.57.141
  • Mukai, H.; Miyazaki, S.; Umetani, S.; Kihara, S.; Matsui, M. Synergic liquid/liquid extraction of lithium and sodium with 4-acyl-5-pyrazolones with bulky substituents and tri-n-octylphosphine oxide. Anal. Chim. Acta 1989, 220, 111–117. doi:10.1016/S0003-2670(00)80255-X
  • Mantuano, D.P.; Dorella, G.; Elias, R.C.A.; Mansur, M.B. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J. Power Sour. 2006, 159, 1510–1518. doi:10.1016/j.jpowsour.2005.12.056
  • Nogueira, C.A.; Margarido, F.; Vieceli, N.; Durão, F.; Guimarães, C. Comparison of processes for lithium recovery from lepidolite by H2SO4 digestion or HCl leaching. Proceedings of the International Conference on Mining, Material and Metallurgical Engineering, Prague, Czech Republic, August 11–12, 2014, Paper No. 72. Available at: http://repositorio.lneg.pt///handle/10400.9/2562 [accessed October 29, 2015].
  • Tamagawa, O.; Muto, A. Development of cesium ion extraction process using a slug flow microreactor. Chem. Eng. J. 2011, 167, 700–704. doi:10.1016/j.cej.2010.11.002
  • Chaoqun, Y.; Yuchao, Z.; Chunbo, Y.; Minhui, D.; Zhengya, D.; Guangwen, C. Characteristics of slug flow with inertial effects in a rectangular microchannel. Chem. Eng. Sci. 2013, 95, 246–256. doi:10.1016/j.ces.2013.03.046
  • Ghaini, A.; Mescher, A.; Agar, D.W. Hydrodynamic studies of liquid–liquid slug flows in circular microchannels. Chem. Eng. Sci. 2011, 66, 1168–1178. doi:10.1016/j.ces.2010.12.033
  • Dessimoz, A.-L.; Cavin, L.; Renken, A.; Kiwi-Minsker, L. Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem. Eng. Sci. 2008, 63, 4035–4044. doi:10.1016/j.ces.2008.05.005
  • Aota, A. Applications of multiphase microflows to chemical processes. Bunseki Kagaku 2014, 63, 299–310. doi:10.2116/bunsekikagaku.63.299
  • Kashid, M.N.; Agar, D.W. Hydrodynamics of liquid–liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chem. Eng. J. 2007, 131, 1–13. doi:10.1016/j.cej.2006.11.020
  • Burns, J.R.; Ramshaw, C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 2001, 1, 10–15. doi:10.1039/b102818a
  • Darekar, M.; Sen, N.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K. Liquid–liquid extraction in microchannels with zinc–D2EHPA system. Hydrometallurgy 2014, 144–145, 54–62. doi:10.1016/j.hydromet.2014.01.010
  • Singh, K.K.; Renjith, A.U.; Shenoy, K.T. Liquid–liquid extraction in microchannels and conventional stage-wise extractors: A comparative study. Chem. Eng. Process. Process Intensif. 2015, 98, 95–105. doi:10.1016/j.cep.2015.10.013
  • Aoki, N.; Tanigawa, S.; Mae, K. A new index for precise design and advanced operation of mass transfer in slug flow. Chem. Eng. J. 2011, 167, 651–656. doi:10.1016/j.cej.2010.07.071

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.