2,538
Views
27
CrossRef citations to date
0
Altmetric
Articles

Simulation of Neptunium Extraction in an Advanced PUREX Process—Model Improvement

, , , , , & show all

References

  • Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R. Impact limits of portioning and transmutation scenarios on the radiotoxicity of actinides in radioactive waste. Nuclear Energy. 2003, 42, 263–277.
  • Koch, L. Minor actinide transmutation- a waste management option. J. Less-Common Met. 1986, 122, 371–382.
  • Poinssot, C.; Boullis, B. Actinide recycling within closed fuel cycles. Nuclear Eng. Int. 2012, 57(670), 17–21.
  • Abderrahim, H.A.; Paillère, H. Strategic research agenda, sustainable nuclear energy technology platform, Available at: http://www.snetp.eu/wp-content/uploads/2014/05/sar2009.pdf. [accessed 19 October 2015]
  • McCarthy, K.A. Nuclear fuel cycle transition scenario studies; Nuclear Energy Agency, Organisation for Economic Cooperation and Development: Paris; 2009.
  • Irish, E.R.; Reas, W.H. The PUREX process–a solvent extraction reprocessing method for irradiated uranium. HW–49483A, Hanford Atomic Products Operation: Richland, Washington, USA; April, 1957.
  • Herbst, R.S.; Baron, P. Standard and advanced separation: PUREX processes for nuclear. In Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment; K.L. Nash; G.J. Lumetta, Eds.; Woodhouse Publishing Ltd.: Oxford; 2011.
  • Taylor, R.J.; Denniss, I.S,; Wallwork, A.L. Neptunium control in an advanced PUREX process. Nuclear Energy. 1997, 36, 39–46.
  • Drake, V.A. Extraction chemistry of neptunium. In Science and technology of tributyl phosphate, Vol. III; W.W. Schulz, et al., Eds; CRC Press: Boca Raton, FL; 1990.
  • Yoshida, Z.; Johnson, S.G.; Kimura, T.; Krsul, J.R. Neptunium. In The chemistry of the actinide and transactinide elements; L.R. Morss, et al., Eds.; Springer: Netherlands; 2011.
  • Taylor, R.J.; Gregson, C.R.; Carrott, M.J.; Mason, C.; Sarsfield, M.J. Progress towards the full recovery of neptunium in an advanced PUREX process. Solvent Ext. Ion Exch. 2013, 31(4), 442–462.
  • Lecomte, M.E., Ed. Treatment and recycling of spent nuclear fuel: actinide partitioning - application to waste management. CEA Saclay: Paris; 2008.
  • Chen, H.; Taylor, R.J.; Jobson, M.; Woodhead, D.A.; Masters, A.J. Development and validation of a flowsheet simulation model for neptunium extraction in an advanced PUREX process. Solvent Ext. Ion Exch. 2016, 34(4), 297–321.
  • Process Systems Enterprise. gPROMS Model Builder ©, Available at www.psenterprise.com, 1997–2015.
  • Siddall, T.H.; Dukes, E.K. Kinetics of HNO2 catalyzed oxidation of neptunium(V) by aqueous solutions of nitric acid. J. Am. chem. Soc. 1959, 81(4), 790–794.
  • Moulin, J.P. Kinetics of redox reactions of neptunium in nitric acid: oxidation of neptunium (IV) into neptunium(V) and oxidation of neptunium (V) into neptunium (VI) by nitric acid, catalyzed by nitrous acid. CEA-R-4912, L’Universite Pierre et Marie Curie & Commissariat a I’Energie Atomique: Fontenay-aux-Roses, France, 1978.
  • Swanson, J.. Oxidation of neptunium (V) in nitric acid solution: laboratory study of rate accelerating materials (RAM). BNWL-1017, Battelle Memorial Institute - Pacific Northwest Laboratory: Richland, Washington, USA, April, 1969.
  • Koltunov, V.S. Kinetika reaktsii aktinoidov (kinetics of actinide reactions); Atomizdat: Moscow; 1974.
  • Tochiyama, O.; Nakamura, Y.; Hirota, M.; Inoue, Y. Kinetics of nitrous acid-catalyzed oxidation of neptunium in nitric acid-TBP extraction system. J. Nuclear Sci. Technol. 1995, 32(2), 118–124.
  • Gourisse, D. Oxidation du neptunium (V) par les solutions aqueous d’acide nitrique en presence d’acide nitreux. J. Inorg. Nucl. Chem. 1971, 33, 831–837.
  • Precek, M. The kinetic and radiolytic aspects of control of the redox speciation of neptunium in solutions of nitric acid; Oregon State University: Corvallis, Oregon; 2012.
  • Gregson, C.; Boxall, C.; Carrott, M.; Edwards, S.; Sarsfield, M.; Taylor, R.; Woodhead, D. Neptunium (V) oxidation by nitrous acid in nitric acid. Procedia Chem. 2012, 7, 398–403.
  • Uchiyama, G.; Hotoku, S.; Fujine, S. Distribution of nitrous acid between tri-n-butyl phosphate/n-dodecane and nitric acid. Solvent Extr. Ion Exch. 1998, 16(5), 1177–1190.
  • Kazanjian, A.R.; Miner, F.J.; Brown, A.K.; Hagan, P.G.; Berry, J.W. Radiolysis of nitric acid solution: L.E.T. effects. Trans. Faraday Soc. 1970, 66, 2192–2198.
  • Shilov, V.P.; Gogolev, A.V.; Fedoseev, A.M. Speciation, stability, and reactions of Np(III–VII) in aqueous solutions. Radiochemistry. 2012, 54, 212–217.
  • Edwards, S.E.; Boxall, C.; Taylor, R.J.; Woodhead, D.A. The kinetics of nitrous acid catalysed oxidation of neptunium(V) in nitric acid., 2017, in preparation.
  • Mincher, B.J.; Precek, M.; Paulenova, A. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase. J. Radioanal Nucl. Chem. 2016, 308, 1005–1009.
  • Escure, H. Contribution a L’etude de la Dismutation du Neptunium Pentavalent en Solution Acide. CEA-R-4574, Centre d’Etudes Nucléaires de Fontenay-aux-Roses: Fontenay-aux-Roses, France, October, 1974
  • Koltunov, V.S.; Tikhonov, M.F. Kinetics of the disproportionation of neptunium(V) in a nitric acid solution. Radiokhimiya. 1975, 17(4), 560–563.
  • Hindman, J.C.; Sullivan, J.C.; Cohen, D. Kinetics of reactions between neptunium ions. The Np(IV)-Np(VI) reaction in perchlorate solution. J. Am. Chem. Soc. 1954, 76(12), 3278–3280.
  • Sarsfield, M.J.; Taylor, R.T.; Maher, C.J. Neptunium (V) disproportonation and cation-cation interactions in TBP-kerosene solvent. Radiochim. Acta. 2007, 95, 677–682.
  • Wehrey, F.; Guillaume, B. Kinetics of the neptunium(IV)-neptunium(VI) reaction and of the oxidation of neptunium (V) by nitric acid in tributylphosphate -n- dodecane solutions. Radiochim. Acta. 1989, 46, 95–100.
  • Tachimori, S. Numerical simulation for chemical reactions of actinide elements in aqueous nitric acid solution. J. Nucl. Sci. Technol. 1991, 28(3), 218–227.
  • Rykov, A.G.; Yakovlev, G.N. Redox reactions of the actinides. II. Kinetics for the reaction between neptunium(IV) and neptunium(VI) in nitrate solutions. Radiokhimiya. 1966, 8(1), 27–32.
  • Tachimori, S. EXTRA.M: a computer code system for analysis of the purex process with mixer settlers for reprocessing. JAERI 1331, Japan Atomic Energy Research Institute: Tokai-mura, Naka-gun, Ibaraki-ken, Japan, 1993.
  • Jubin, R.T. A modified mathematical model for calculating distribution coefficients for U (VI), Pu (IV), and nitric acid in the uranyl nitrate-plutonium (IV) nitrate-nitric acid-water/tributyl phosphate system. ORNL/TM-7217, Oak Ridge National Laboratory: Oak Ridge, Tennessee, USA, April, 1980.
  • Kolarik, Z,; Petrich, G.A mathematic model of distribution equilibria in the extraction of U(VI), U(IV), Pu(IV), Np(VI), Np(IV), and nitric acid by 30% tributyl phosphate (TBP) in aliphatic diluents. Ber.Bunsenges. Phys. Chem. 1979, 83, 1110–1113.
  • Rozen, A.M.; Andrutskii, L.G.; Vlasov, V.S. Improved mathematical models of actinide extraction by 30% solutions of the tri-n-butylphosphate in diluents. Atomnaya Energiya. 1987, 62(4), 227–231.
  • Kolarik, Z.; Dressler, P. PUREX Process related distribution data on neptunium (IV,VI). KfK-4667, Karlsruhe, Germany, January, 1990.
  • Nabeshima, M. Prediction of mass transfer and heat evolution of PUREX pulsed columns by the DYNAC computer model. Nuclear Technology. 1991, 95, 33–43.
  • Hotoku, S.; Kihara, T.; Uchiyama, G.; Fujine, S.; Maeda, M. Distribution equilibrium of nitrous acid in reprocessing solution. JAERI-M 93-095, Japan Atomic Energy Research Institute: Tokai-mura, Naka-gun, Ibaraki-ken, Japan, 1993.
  • Tsubata, Y.; Asakura, T.; Morita, Y. Development of a computer code, PARC, for simulation of liquid-liquid extraction process in reprocessing. JAEA-Data/Code 2008-010, Japan Atomic Energy Agency: Tokai-mura, Naka-gun, Ibaraki-ken, Japan, 2008.
  • Kumar, S.; Koganti, S. Modelling of distribution coefficients of nitrous acid in 15-30 vol.% TBP n-dodecane -nitric acid system. Indian J. Chem. Technol. 2000, 7, 336–337.
  • Zhu, L.; Chen, Y.; Tang, H.; He, H. Distribution coefficient of nitrous acid and its computer simulation. J. Nuclear Radiochem. 2014, 36(4), 229–234.
  • French, E.S. Distribution of nitrous acid between mainly 30%TBP/OK and aqueous nitric acid. Chem Group Memo 176, BNFL R&D Department: Cumbria, UK, Decomber, 1988.
  • Jenkins, L. Distribution of nitrous acid between 30%TBP/OK and aqueous nitric acid. Chem Group Memo 182, BNFL R & D Department: Cumbria, UK, April, 1989.
  • Jenkins, L. Distribution of nitrous acid between 30%TBP/OK and aqueous nitric acid in the presence of uranium(VI). Chem Group Memo 183, BNFL R & D Department: Cumbria, UK, April, 1989.
  • Burger, L.L.; Money, M. D. Nitrous acid behavior in PUREX systems. HW-60278, General Electric: Richland, Washington, USA, May, 1959.
  • Biddle, P.; Miles, J. H. Rate of reaction of nitrous acid with hydrazine and with sulphamic acid. J. Inorg. Nucl. Chem. 1968, 30, 1291–1297.
  • Loveland, W.; Morrissey, D. J.; Seaborg, G. T. Modern Nuclear Chemistry. John Wiley & Sons, Inc.: Hoboken, New Jersey; 2006.
  • Birkett, J.E.; Carrott, M.J.; Fox, O.D.; Jones, C.J.; Maher, C.J.; Roube, C.V.; Taylor, R.J.; Woodhead, D.A. Controlling neptunium and plutonium within single cycle solvent extraction for advanced fuel cycles. J. Nucl. Sci. Technol. 2007, 44(3), 337–343.
  • Nakahara, M.; Nakajima, Y.; Koizumi, T. Extraction behavior of fission products with tri-n-butyl phosphate by countercurrent multistage extraction in a uranium, plutonium,and neptunium co-recovery system. Ind. Eng. Chem. Res. 2012, 51, 13245−13250.
  • Dinh, B.; Mosiy, P.; Baron, P.; Calor, J. N.; Espinoux, D.; Lorrain, B; Benchikouhne-Ranchoux, M. Modified PUREX first cycle extraction for neptunium recovery, In Solvent extraction: fundamentals to industrial applications; B.A. Moyer, Ed.; Proceedings ISEC 2008 International Solvent Extraction Conference; 2008, 581–586.