451
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Operational Conditions on Separation of Lithium from Geothermal Water by λ-MnO2 Using Ion Exchange–Membrane Filtration Hybrid Process

, , , , , & show all

References

  • Swain, B.;. Recovery and Recycling of Lithium: A Review. Sep. Purif. Technol. 2017, 172, 388–403. DOI: 10.1016/j.seppur.2016.08.031.
  • Cao, J.; Shi, J.; Hu, Y.; Wu, M.; Ouyang, C.; Xu, B. Lithium Ion Adsorption and Diffusion on Black Phosphorene Nanotube: A First-Principles Study. Appl. Surf. Sci. 2017, 392, 88–94. DOI: 10.1016/j.apsusc.2016.09.004.
  • Xu, X.; Chen, Y.; Wan, P.; Gasem, K.; Wang, K.; He, T.; Adidharma, H.; Fan, M. Extraction of Lithium with Functionalized Lithium Ion-Sieves. Prog. Mater. Sci. 2016, 84, 276–313. DOI: 10.1016/j.pmatsci.2016.09.004.
  • Singh, M.; Kaiser, J.; Hahn, H. A Systematic Study of Thick Electrodes for High Energy Lithium Ion Batteries. J. Electroanal. Chem. 2016, 782, 245–249. DOI: 10.1016/j.jelechem.2016.10.040.
  • Shi, C.; Jing, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jia, Y. Solvent Extraction of Lithium from Aqueous Solution Using Non-Fluorinated Functionalized Ionic Liquids as Extraction Agents. Sep. Purif. Technol. 2017, 172, 473–479. DOI: 10.1016/j.seppur.2016.08.034.
  • Park, J.; Sato, H.; Nishihama, S.; Yoshizuka, K. Lithium Recovery from Geothermal Water by Combined Adsorption Methods. Solvent Extr.Ion Exchange. 2012, 30, 398–404. DOI: 10.1080/07366299.2012.687165.
  • Park, J.; Sato, H.; Nishihama, S.; Yoshizuka, K. Separation and Recovery of Lithium from Geothermal Water by Sequential Adsorption Process with λ –Mno2 and TiO2. Ion Exchange Lett. 2012, 5, 1–5.
  • Zandevakili, S.; Ranjbar, M.; Ehteshamzadeh, M. Recovery of Lithium from Urmia Lake by a Nanostructure MnO2 Ion Sieve. Hydrometallurgy. 2014, 149, 148–152. DOI: 10.1016/j.hydromet.2014.08.004.
  • Kitajou, A.; Suzuki, T.; Nishihama, S.; Yoshizuka, K. Selective Recovery of Lithium from Seawater Using a Novel MnO2 Type Adsorbent II – Enhancement of Lithium Ion Selectivity of the Adsorbent. Ars Separatoria Acta. 2003, 2, 97–106.
  • Kitajou, A.; Holba, M.; Suzuki, T.; Nishihama, S.; Yoshizuka, K. Selective Recovery System of Lithium from Seawater Using a Novel Granulated λ-MnO2 Adsorbent. J. Ion Exchange. 2005, 16, 49–54. DOI: 10.5182/jaie.16.49.
  • Iizuka, A.; Yamashita, Y.; Nagsawa, H.; Yamasaki, A.; Yanagisawa, Y. Separation of Lithium and Cobalt from Waste Lithium-Ion Batteries via Bipolar Membrane Electrodialysis Coupled with Chelation. Sep. Purif. Technol. 2013, 113, 33–41. DOI: 10.1016/j.seppur.2013.04.014.
  • Somrani, A.; Hamzaoui, A. H.; Pontie, M. Study on Lithium Separation from Salt Lake Brines by Nanofiltration (NF) and Low Pressure Reverse Osmosis (LPRO). Desalination. 2013, 317, 184–192. DOI: 10.1016/j.desal.2013.03.009.
  • Yoshizuka, K.; Fukui, K.; Inoue, K. Selective Recovery of Lithium from Seawater Using a Novel MnO2 Type Adsorbent. Ars Separatoria Acta. 2002, 1, 79–86.
  • Chitrakar, R.; Kanoh, H.; Miyai, Y.; Ooi, K. Synthesis of o-LiMnO2 by Microwave Irradiation and Study Its Heat Treatment and Lithium Exchange. J. Solid State Chem. 2002, 163, 1–4. DOI: 10.1006/jssc.2001.9403.
  • Chitrakar, R.; Kasaishi, S.; Umeno, A.; Sakane, K.; Takagi, N.; Kim, Y.; Ooi, K. Synthesis and Characterization of Lithium Nickel Manganese Oxides and Their Delithiated Phases. J. Solid State Chem. 2002, 169, 35–43. DOI: 10.1016/S0022-4596(02)00014-2.
  • Kim, Y.; No, K.; Chung, K.; Lee, J.; Ooi, K. Li+ Extraction Reactions with Spinel-Type LiM0.5Mn1.5O4 (M=Ti, Fe) and Their Electronic Structures. Mater. Lett. 2003, 57, 4140–4146. DOI: 10.1016/S0167-577X(03)00279-9.
  • Nishihama, S.; Onishi, K.; Yoshizuka, K. Selective Recovery Process of Lithium from Seawater Using Integrated Ion Exchange Methods. Solvent Extr.Ion Exchange. 2011, 29, 421–431. DOI: 10.1080/07366299.2011.573435.
  • Yu, Q.; Sasaki, K.; Hirajima, T. Bio-Templated Synthesis of Lithium Manganese Oxide Microtubes and Their Application in Li+ Recovery. J. Hazard. Mater. 2013, 262, 38–47. DOI: 10.1016/j.jhazmat.2013.08.027.
  • Li, L.; Qu, W.; Liu, F.; Zhao, T.; Zhang, X.; Chen, R.; Wu, F. Surface Modification of Spinel λ –Mno2 and Its Lithium Adsorption Properties from Spent Lithium Ion Batteries. Appl. Surf. Sci. 2014, 315, 59–65. DOI: 10.1016/j.apsusc.2014.07.090.
  • Noerochim, L.; Satriawangsa, G. A.; Susanti, D.; Widodo, A. Synthesis and Characterization of Lithium Manganese Oxide with Different Ratio of Mole on Lithium Recovery Process from Geothermal Fluid of Lumpur Sidoarjo. J. Mater. Sci. Chem. Eng. 2015, 3, 56–62. DOI: 10.4236/msce.2015.311007.
  • Li, L.; Deshmane, V.; Paranthaman, M. P.; Bhave, R.; Moyer, B.; Harrison, S. Lithium Recovery from Aqueous Resources and Batteries: A Brief Review. Johnson Matthey Technol. Rev. 2018, 62(2), 161–176. DOI: 10.1595/205651317X696676.
  • Recepoğlu, Y. K.; Kabay, N.; Yılmaz-İpek, İ.; Arda, M.; Yoshizuka, K.; Nishihama, S.; Yüksel, M. Equilibrium and Kinetic Studies on Lithium Adsorption from Geothermal Water by λ-MnO2. Solvent Extr.Ion Exchange. 2017, 35, 221–231. DOI: 10.1080/07366299.2017.1319235.
  • Koltuniewicz, A. B.; Witek, A.; Bezak, K. Efficiency of Membrane-Sorption Integrated Processes. J. Memb. Sci. 2004, 239, 129–141. DOI: 10.1016/j.memsci.2004.02.037.
  • Yılmaz, İ.; Kabay, N.; Bryjak, M.; Yüksel, M.; Wolska, J. A Submerged Membrane–Ion-Exchange Hybrid Process for Boron Removal. Desalination. 2006, 198, 310–315. DOI: 10.1016/j.desal.2006.01.031.
  • Kabay, N.; Yılmaz, İ.; Bryjak, M.; Yüksel, M. Removal of Boron from Aqueous Solutions by a Hybrid Ion Exchange–Membrane Process. Desalination. 2006, 198, 158–165. DOI: 10.1016/j.desal.2006.09.011.
  • Kabay, N.; İpek-Yılmaz, İ.; Soroko, I.; Makowski, M.; Kırmızısakal, O.; Yağ, S.; Bryjak, M.; Yüksel, M. Removal of Boron from Balcova Geothermal Water by Ion Exchange-Microfiltration Hybrid Process. Desalination. 2009, 241, 167–173. DOI: 10.1016/j.desal.2007.10.100.
  • Güler, E.; Kabay, N.; Yüksel, M.; Yiğit, N. Ö.; Kitiş, M.; Bryjak, M. Integrated Solution for Boron Removal from Seawater Using RO Process and Sorption-Membrane Filtration Hybrid Method. J. Memb. Sci. 2011, 375, 249–257. DOI: 10.1016/j.memsci.2011.03.050.
  • Yılmaz-İpek, İ.; Kabay, N.; Yüksel, M.; Yapıcı, D.; Yüksel, Ü. Application of Adsorption–Ultrafiltration Hybrid Method for Removal of Phenol from Water by Hypercrosslinked Polymer Adsorbents. Desalination. 2012, 306, 24–28. DOI: 10.1016/j.desal.2012.08.033.
  • Kabay, N.; Köseoğlu, P.; Yavuz, E.; Yüksel, Ü.; Yüksel, M. An Innovative Integrated System for Boron Removal from Geothermal Water Using RO Process and Ion Exchange-Ultrafiltration Hybrid Method. Desalination. 2013, 316, 1–7. DOI: 10.1016/j.desal.2013.01.020.
  • Kabay, N.; Köseoğlu, P.; Yapıcı, D.; Yüksel, Ü.; Yüksel, M. Coupling Ion Exchange with Ultrafiltration for Boron Removal from Geothermalwater-Investigation of Process Parameters and Recycle Tests. Desalination. 2013, 316, 17–22. DOI: 10.1016/j.desal.2013.01.027.
  • Samatya, S.; Köseoğlu, P.; Kabay, N.; Tuncel, A.; Yüksel, M. Utilization of Geothermal Water as Irrigation Water after Boron Removal by Monodisperse Nanoporous Polymers Containing NMDG in Sorption–Ultrafiltration Hybrid Process. Desalination. 2015, 364, 62–67. DOI: 10.1016/j.desal.2015.02.030.
  • Yılmaz-İpek, İ.; Yüksel, S.; Kabay, N.; Yüksel, M. Investigation of Process Parameters for Removal of Bisphenol A (BPA) from Water by Polymeric Adsorbents in Adsorption-Ultrafiltration Hybrid System. J. Chem. Technol. Biotechnol. 2014, 89, 835–840. DOI: 10.1002/jctb.4317.
  • Recepoğlu, Y. K.; Kabay, N.; Yılmaz-İpek, İ.; Arda, M.; Yüksel, M.; Yoshizuka, K.; Nishihama, S. Elimination of Boron and Lithium Coexisting in Geothermal Water by Adsorption-Membrane Filtration Hybrid Process. Sep. Sci. Technol. 2018, 53, 856–862. DOI: 10.1080/01496395.2017.1405985.
  • Hameed, B. H.; Tan, I. A. W.; Ahmad, A. L. Adsorption Isotherm, Kinetic Modeling and Mechanism of 2, 4, 6-Trichlorophenol on Coconut Husk-Based Activated Carbon. Chem. Eng. J. 2008, 144, 235–244. DOI: 10.1016/j.cej.2008.01.028.
  • Bunani, S.; Arda, M.; Kabay, N.; Yoshizuka, K.; Nishihama, S. Effect of Process Conditions on Recovery of Lithium and Boron from Water Using Bipolar Membrane Electrodialysis (BMED). Desalination. 2017, 416, 10–15. DOI: 10.1016/j.desal.2017.04.017.
  • Bunani, S.; Yoshizuka, K.; Nishihama, S.; Arda, M.; Kabay, N. Application of Bipolar Membrane Electrodialysis (BMED) for Simultaneous Separation and Recovery of Boron and Lithium from Aqueous Solutions. Desalination. 2017, 424, 37–44. DOI: 10.1016/j.desal.2017.09.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.