1,300
Views
43
CrossRef citations to date
0
Altmetric
Review Article

PolyHIPEs for Separations and Chemical Transformations: A Review

ORCID Icon & ORCID Icon

References

  • Barby, D.; Haq, Z. Low Density Porous Cross-Linked Polymeric Materials and Their Preparation; European Patent EP0060138A1, 1982.
  • Hainey, P.; Huxham, I. M.; Rowatt, B.; Sherrington, D. C.; Tetley, L. Synthesis and Ultrastructural Studies of Styrene-Divinylbenzene Polyhipe Polymers. Macromolecules. 1991, 24(1), 117–121. DOI: 10.1021/ma00001a019.
  • Williams, J. M.;. Toroidal Microstructures from Water-In-Oil Emulsions. Langmuir. 1988, 4(1), 44–49. DOI: 10.1021/la00079a007.
  • Williams, J. M.; Wrobleski, D. A. Spatial Distribution of the Phases in Water-In-Oil Emulsions. Open and Closed Microcellular Foams from Cross-Linked Polystyrene. Langmuir. 1988, 4(3), 656–662. DOI: 10.1021/la00081a027.
  • Cameron, N. R.; Sherrington, D. C. High Internal Phase Emulsions (Hipes) — Structure, Properties and Use in Polymer Preparation. In Biopolymers Liquid Crystalline Polymers Phase Emulsion; Abe, A.; Benoit, H.; Cantow, H.-J.; Corradini, P.; Dušek, K.; Edwards, S.; Fujita, H.; Glőckner, G.; Hőcker, H.; Hőrhold, H.-H.; et al., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; pp 163–214.
  • Brun, N.; Ungureanu, S.; Deleuze, H.; Backov, R. Hybrid Foams, Colloids and Beyond: From Design to Applications. Chem. Soc. Rev. 2011, 40(2), 771–788. DOI: 10.1039/B920518G.
  • Silverstein, M. S.;. PolyHIPEs: Recent Advances in Emulsion-Templated Porous Polymers. Prog. Polym. Sci. 2014, 39(1), 199–234. DOI: 10.1016/j.progpolymsci.2013.07.003.
  • Silverstein, M. S.;. Emulsion-Templated Porous Polymers: A Retrospective Perspective. Polymer. 2014, 55(1), 304–320. DOI: 10.1016/j.polymer.2013.08.068.
  • Svec, F.; Fréchet, J. M. J. New Designs of Macroporous Polymers and Supports: From Separation to Biocatalysis. Science. 1996, 273(5272), 205–211. DOI: 10.1126/science.273.5272.205.
  • Svec, F.; Frechet, J. M. J. Continuous Rods of Macroporous Polymer as High-Performance Liquid Chromatography Separation Media. Anal. Chem. 1992, 64(7), 820–822.
  • Viklund, C.; Svec, F.; Fréchet, J. M. J.; Irgum, K. Monolithic, “Molded”, Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-Phase Chemistry: Control of Porous Properties during Polymerization. Chem. Mater. 1996, 8(3), 744–750. DOI: 10.1021/cm950437j.
  • Alexandratos, S. D.; Beauvais, R.; Duke, J. R.; Jorgensen, B. S. Functionalized Polymer Foams as Metal Ion Chelating Agents with Rapid Complexation Kinetics. J. Appl. Polym. Sci. 1998, 68(12), 1911–1916. DOI: 10.1002/(ISSN)1097-4628.
  • Mert, E. H.; Kaya, M. A.; Yıldırım, H. Preparation and Characterization of Polyester–Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Des. Monomers Polym. 2012, 15(2), 113–126. DOI: 10.1163/156855511X615001.
  • Huš, S.; Kolar, M.; Krajnc, P. Separation of Heavy Metals from Water by Functionalized Glycidyl Methacrylate Poly (High Internal Phase Emulsions). J. Chromatogr. A. 2016, 1437(Supplement C), 168–175. DOI: 10.1016/j.chroma.2016.02.012.
  • Chen, X.; Yuan, W.; Jiang, M.; Xie, X. Surface Glycopolymer-Modified Functional Macroporous polyHIPE Obtained by ATRP for the Removal of Boron in Water. New J. Chem. 2018, 42(3), 2104–2112. DOI: 10.1039/C7NJ03737F.
  • Benicewicz, B. C.; Jarvinen, G. D.; Kathios, D. J.; Jorgensen, B. S. Open-Celled Polymeric Foam Monoliths for Heavy Metal Separations Study. J. Radioanal. Nucl. Chem. 1998, 235(1), 31–35. DOI: 10.1007/BF02385933.
  • Marsh, S. F.;. ReillexTM HPQ: A New Macroporous Polyvinylpyridine Resin for Separating Plutonium Using Nitrate Anion Exchange. Solvent Extr. Ion Exch. 1989, 7(5), 889–908. DOI: 10.1080/07360298908962344.
  • Wakeman, R. J.; Bhumgara, Z. G.; Akay, G. Ion Exchange Modules Formed from Polyhipe Foam Precursors. Chem. Eng. J. 1998, 70(2), 133–141. DOI: 10.1016/S0923-0467(98)00088-8.
  • Katsoyiannis, I. A.; Zouboulis, A. I. Removal of Arsenic from Contaminated Water Sources by Sorption onto Iron-Oxide-Coated Polymeric Materials. Water Res. 2002, 36(20), 5141–5155.
  • Inoue, H.; Yamanaka, K.; Yoshida, A.; Aoki, T.; Teraguchi, M.; Kaneko, T. Synthesis and Cation Exchange Properties of a New Porous Cation Exchange Resin Having an Open-Celled Monolith Structure. Polymer. 2004, 45(1), 3–7. DOI: 10.1016/j.polymer.2003.10.097.
  • Alikhani, M.; Moghbeli, M. R. Ion-Exchange polyHIPE Type Membrane for Removing Nitrate Ions: Preparation, Characterization, Kinetics and Adsorption Studies. Chem. Eng. J. 2014, 239, 93–104. DOI: 10.1016/j.cej.2013.11.013.
  • Barlik, N.; Keskinler, B.; Kocakerim, M. M.; Akay, G. Surface Modification of Monolithic PolyHIPE Polymers for Anionic Functionality and Their Ion Exchange Behavior. J. Appl. Polym. Sci. 2015, 132(29), 8. DOI: 10.1002/app.42286.
  • Barlık, N.; Keskinler, B.; Kocakerim, M. M.; Akay, G. Functionalized PolyHIPE Polymer Monoliths as an Anion-Exchange Media for Removal of Nitrate Ions from Aqueous Solutions. Desalination Water Treat. 2016, 57(55), 26440–26447. DOI: 10.1080/19443994.2016.1164083.
  • Moghbeli, M. R.; Khajeh, A.; Alikhani, M. Nanosilica Reinforced Ion-Exchange polyHIPE Type Membrane for Removal of Nickel Ions: Preparation, Characterization and Adsorption Studies. Chem. Eng. J. 2017, 309(Supplement C), 552–562. DOI: 10.1016/j.cej.2016.10.048.
  • Pribyl, J.; Fletcher, B.; Steckle, W.; Taylor-Pashow, K.; Shehee, T.; Benicewicz, B. Photoinitiated Polymerization of 4-Vinylpyridine on polyHIPE Foam Surface toward Improved Pu Separations. Anal. Chem. 2017, 89(10), 5174–5178. DOI: 10.1021/acs.analchem.7b01153.
  • Pribyl, J. G.; Taylor-Pashow, K. M. L.; Shehee, T. C.; Benicewicz, B. C. High-Capacity Poly(4-Vinylpyridine) Grafted PolyHIPE Foams for Efficient Plutonium Separation and Purification. ACS Omega. 2018, 3(7), 8181–8189. DOI: 10.1021/acsomega.8b01057.
  • Chen, J. H.; Mai, L. T. T.; Hsu, K. C. Cr (VI) Separation by PolyHIPE Membrane Immobilized with Aliquat 336 by Solvent-Nonsolvent Method. Membr. Water Treat. 2017, 8(6), 575–590.
  • Krajnc, P.; Leber, N.; Stefanec, D.; Kontrec, S.; Podgornik, A. Preparation and Characterisation of Poly(High Internal Phase Emulsion) Methacrylate Monoliths and Their Application as Separation Media. J. Chromatogr. A. 2005, 1065(1), 69–73.
  • Yao, C.; Qi, L.; Jia, H.; Xin, P.; Yang, G.; Chen, Y. A Novel Glycidyl Methacrylate-Based Monolith with Sub-Micron Skeletons and Well-Defined Macropores. J. Mater. Chem. 2009, 19(6), 767–772. DOI: 10.1039/B816712E.
  • Jing, Y.; Gengliang, Y.; Haiyan, L.; Ligai, B.; Qiaoxia, Z. Preparation and Characterization of Porous Poly(Vinyl Ester) Resin Monoliths as Separation Media. J. Appl. Polym. Sci. 2011, 119(1), 412–418. DOI: 10.1002/app.32617.
  • Pulko, I.; Smrekar, V.; Podgornik, A.; Krajnc, P. Emulsion Templated Open Porous Membranes for Protein Purification. J. Chromatogr. A. 2011, 1218(17), 2396–2401. DOI: 10.1016/j.chroma.2010.11.069.
  • Jerenec, S.; Simic, M.; Savnik, A.; Podgornik, A.; Kolar, M.; Turnsek, M.; Krajnc, P. Glycidyl Methacrylate and Ethylhexyl Acrylate Based polyHIPE Monoliths: Morphological, Mechanical and Chromatographic Properties. React. Funct. Polym. 2014, 78, 32–37. DOI: 10.1016/j.reactfunctpolym.2014.02.011.
  • Tunc, Y.; Golgelioglu, C.; Hasirci, N.; Ulubayram, K.; Tuncel, A. Acrylic-Based High Internal Phase Emulsion Polymeric Monolith for Capillary Electrochromatography. J. Chromatogr. A. 2010, 1217(10), 1654–1659. DOI: 10.1016/j.chroma.2010.01.020.
  • Tunc, Y.; Golgelioglu, C.; Tuncel, A.; Ulubayram, K. Polystyrene-Based High Internal Phase Emulsion Polymer Monolithic Stationary Phase for Capillary Electrochromatography. Sep. Sci. Technol. 2012, 47(16), 2444–2449.
  • Choudhury, S.; Connolly, D.; White, B. Application of Polymeric High-Internal-Phase-Emulsion-Coated Stationary-Phase Columns in Open-Tubular Capillary Electrochromatography. J. Appl. Polym. Sci. 2016, 133(48), 44237. DOI: 10.1002/app.44237.
  • Choudhury, S.; Fitzhenry, L.; White, B.; Connolly, D. Polystyrene-co-Divinylbenzene PolyHIPE Monoliths in 1.0 Mm Column Formats for Liquid Chromatography. Materials. 2016, 9(3), 14. DOI: 10.3390/ma9030212.
  • Khodabandeh, A.; Arrua, R. D.; Mansour, F. R.; Thickett, S. C.; Hilder, E. F. PEO-based Brush-Type Amphiphilic macro-RAFT Agents and Their Assembled polyHIPE Monolithic Structures for Applications in Separation Science. Sci. Rep. 2017, 7, 13. DOI: 10.1038/s41598-017-08423-x.
  • Yin, D. Z.; Guan, Y. D.; Gu, H. M.; Jia, Y.; Zhang, Q. Y. Polymerized High Internal Phase Emulsion Monolithic Material: A Novel Stationary Phase of Thin Layer Chromatography. RSC Adv. 2017, 7(12), 7303–7309. DOI: 10.1039/C6RA27609A.
  • Kovacic, S.; Jerabek, K.; Krajnc, P. Responsive Poly(Acrylic Acid) and Poly(N-isopropylacrylamide) Monoliths by High Internal Phase Emulsion (HIPE) Templating. Macromol. Chem. Phys. 2011, 212(19), 2151–2158. DOI: 10.1002/macp.201100229.
  • Hughes, J. M.; Budd, P. M.; Tiede, K.; Lewis, J. Polymerized High Internal Phase Emulsion Monoliths for the Chromatographic Separation of Engineered Nanoparticles. J. Appl. Polym. Sci. 2015, 132(1), 8. DOI: 10.1002/app.41229.
  • Jiang, Q. X.; Menner, A.; Bismarck, A. One-Pot Synthesis of Supported Hydrogel Membranes via Emulsion Templating. React. Funct. Polym. 2017, 114, 104–109. DOI: 10.1016/j.reactfunctpolym.2017.03.003.
  • Yang, X. J.; Tan, L. X.; Xia, L. L.; Wood, C. D.; Tan, B. Hierarchical Porous Polystyrene Monoliths from PolyHIPE. Macromol. Rapid Comm. 2015, 36(17), 1553–1558. DOI: 10.1002/marc.201500235.
  • Perez-Garcia, M. G.; Gutierrez, M. C.; Mota-Morales, J. D.; Luna-Barcenas, G.; Del Monte, F. Synthesis of Biodegradable Macroporous Poly(L-lactide)/Poly(epsilon-caprolactone) Blend Using Oil-in-Eutectic-Mixture High-Internal-Phase Emulsions as Template. ACS Appl. Mater. Interfaces. 2016, 8(26), 16939–16949. DOI: 10.1021/acsami.6b04830.
  • Zhang, N.; Zhong, S. T.; Zhou, X.; Jiang, W.; Wang, T. H.; Fu, J. J. Superhydrophobic P (St-Dvb) Foam Prepared by the High Internal Phase Emulsion Technique for Oil Spill Recovery. Chem. Eng. J. 2016, 298, 117–124. DOI: 10.1016/j.cej.2016.03.151.
  • Lei, L.; Zhang, Q.; Shi, S. X.; Zhu, S. P. Highly Porous Poly(High Internal Phase Emulsion) Membranes with “Open-Cell” Structure and CO2-Switchable Wettability Used for Controlled Oil/Water Separation. Langmuir. 2017, 33(43), 11936–11944. DOI: 10.1021/acs.langmuir.7b02539.
  • Zhang, T.; Guo, Q. P. Continuous Preparation of polyHIPE Monoliths from Ionomer–Stabilized High Internal Phase Emulsions (Hipes) for Efficient Recovery of Spilled Oils. Chem. Eng. J. 2017, 307, 812–819. DOI: 10.1016/j.cej.2016.09.024.
  • Wan, X. Z.; Azhar, U.; Wang, Y. K.; Chen, J.; Xu, A. H.; Zhang, S. X.; Geng, B. Highly Porous and Chemical Resistive P(TFEMA-DVB) Monolith with Tunable Morphology for Rapid Oil/Water Separation. RSC Adv. 2018, 8(15), 8355–8364. DOI: 10.1039/C8RA00501J.
  • Leadbeater, N. E.; Marco, M. Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis. Chem. Rev. 2002, 102(10), 3217–3274. DOI: 10.1021/cr010361c.
  • Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-Supported Organic Catalysts. Chem. Rev. 2003, 103(9), 3401–3430. DOI: 10.1021/cr010440o.
  • Kobayashi, S.; Akiyama, R. Renaissance of Immobilized Catalysts. New Types of Polymer-Supported Catalysts, ‘Microencapsulated Catalysts’, Which Enable Environmentally Benign and Powerful High-Throughput Organic Synthesis. Chem. Commun. 2003, 4, 449–460. DOI: 10.1039/b207445a.
  • Lu, J.; Toy, P. H. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chem. Rev. 2009, 109(2), 815–838. DOI: 10.1021/cr8004444.
  • Zhang, Y.; Riduan, S. N. Functional Porous Organic Polymers for Heterogeneous Catalysis. Chem. Soc. Rev. 2012, 41(6), 2083–2094. DOI: 10.1039/C1CS15227K.
  • Neimann, K.; Neumann, R. A New Non-Metal Heterogeneous Catalyst for the Activation of Hydrogen Peroxide: A Perfluorinated Ketone Attached to Silica for Oxidation of Aromatic Amines and Alkenes. Chem. Commun. 2001, 5, 487–488. DOI: 10.1039/b100421m.
  • Tsubokawa, N.; Kimoto, T.; Endo, T. Oxidation of Alcohols with copper(II) Salts Mediated by Nitroxyl Radicals Immobilized on Ultrafine Silica and Ferrite Surface. J. Mol. Catal. A Chem. 1995, 101(1), 45–50. DOI: 10.1016/1381-1169(95)00060-7.
  • Teruaki, M.; Hiroshi, I. Immobilized Catalyst Directed to Synthetic Control. Cross-Aldol Reaction. Chem. Lett. 1985, 14(9), 1363–1366. DOI: 10.1246/cl.1985.1363.
  • Ottens, M.; Leene, G.; Beenackers, A. A. C. M.; Cameron, N.; Sherrington, D. C. PolyHipe: A New Polymeric Support for Heterogeneous Catalytic Reactions: Kinetics of Hydration of Cyclohexene in Two- and Three-Phase Systems over A Strongly Acidic Sulfonated PolyHipe. Ind. Eng. Chem. Res. 2000, 39(2), 259–266. DOI: 10.1021/ie990452o.
  • Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. Highly Porous Conjugated Polymers for Selective Oxidation of Organic Sulfides under Visible Light. Chem. Commun. 2014, 50(60), 8177–8180. DOI: 10.1039/C4CC02861A.
  • Zhang, K.; Vobecka, Z.; Tauer, K.; Antonietti, M.; Vilela, F. π-Conjugated polyHIPEs as Highly Efficient and Reusable Heterogeneous Photosensitizers. Chem. Commun. 2013, 49(95), 11158–11160. DOI: 10.1039/c3cc45597a.
  • Koler, A.; Paljevac, M.; Cmager, N.; Iskra, J.; Kolar, M.; Krajnc, P. Poly(4-Vinylpyridine) polyHIPEs as Catalysts for Cycloaddition Click Reaction. Polymer. 2017, 126, 402–407. DOI: 10.1016/j.polymer.2017.04.051.
  • Ünnü, V. Ş.; Çetinkaya, S. Synthesis and Catalytic Activity of PolyHIPE-Supported NHC-Bearing Ruthenium Initiator for ROMP. Catal. Lett. 2018, 148(8), 2432–2445. DOI: 10.1007/s10562-018-2467-4.
  • Desforges, A.; Deleuze, H.; Mondain-Monval, O.; Backov, R. Palladium Nanoparticle Generation within Microcellular Polymeric Foam and Size Dependence under Synthetic Conditions. Ind. Eng. Chem. Res. 2005, 44(23), 8521–8529. DOI: 10.1021/ie040239e.
  • Desforges, A.; Backov, R.; Deleuze, H.; Mondain-Monval, O. Generation of Palladium Nanoparticles within Macrocellular Polymeric Supports: Application to Heterogeneous Catalysis of the Suzuki–Miyaura Coupling Reaction. Adv. Funct. Mater. 2005, 15(10), 1689–1695. DOI: 10.1002/(ISSN)1616-3028.
  • Ungureanu, S.; Deleuze, H.; Sanchez, C.; Popa, M. I.; Backov, R. First Pd@Organo−Si(HIPE) Open-Cell Hybrid Monoliths Generation Offering Cycling Heck Catalysis Reactions. Chem. Mater. 2008, 20(20), 6494–6500. DOI: 10.1021/cm801525c.
  • Liu, X.; Li, Y.; Xing, Z.; Zhao, X.; Liu, N.; Chen, F. Monolithic Carbon Foam-Supported Au Nanoparticles with Excellent Catalytic Performance in a Fixed-Bed System. New J. Chem. 2017, 41(24), 15027–15032. DOI: 10.1039/C7NJ03018E.
  • Wang, S.; Li, J.; Qi, M.; Gao, X.; Wang, W.-J. Toward Maximizing the Mechanical Property of Interconnected Macroporous Polystyrenes Made from High Internal Phase Emulsions. Langmuir. 2017, 33(50), 14295–14303. DOI: 10.1021/acs.langmuir.7b03176.
  • Yuan, W.; Chen, X.; Xu, Y.; Yan, C.; Liu, Y.; Lian, W.; Zhou, Y.; Li, Z. Preparation and Recyclable Catalysis Performance of Functional Macroporous polyHIPE Immobilized with Gold Nanoparticles on Its Surface. RSC Adv. 2018, 8(11), 5912–5919. DOI: 10.1039/C8RA00089A.
  • Liu, H.; Wan, D.; Du, J.; Jin, M. Dendritic Amphiphile Mediated One-Pot Preparation of 3D Pt Nanoparticles-Decorated PolyHIPE as a Durable and Well-Recyclable Catalyst. ACS Appl. Mater. Interfaces. 2015, 7(37), 20885–20892. DOI: 10.1021/acsami.5b06283.
  • Wan, Y.; Feng, Y.; Wan, D.; Jin, M. Polyamino Amphiphile Mediated Support of Platinum Nanoparticles on polyHIPE as an over 1500-Time Recyclable Catalyst. RSC Adv. 2016, 6(110), 109253–109258. DOI: 10.1039/C6RA19013H.
  • Yi, F.; Gao, Y.; Li, H.; Yi, L.; Chen, D.; Lu, S. Nitrogen- and Oxygen-Codoped Porous Carbonaceous Foam Templated from High Internal Emulsion as PtRu Catalyst Support for Direct Methanol Fuel Cell. Electrochim. Acta. 2016, 211, 768–776. DOI: 10.1016/j.electacta.2016.06.092.
  • Brun, N.; Babeau Garcia, A.; Deleuze, H.; Achard, M. F.; Sanchez, C.; Durand, F.; Oestreicher, V.; Backov, R. Enzyme-Based Hybrid Macroporous Foams as Highly Efficient Biocatalysts Obtained through Integrative Chemistry. Chem. Mater. 2010, 22(16), 4555–4562. DOI: 10.1021/cm100823d.
  • Viswanathan, P.; Johnson, D. W.; Hurley, C.; Cameron, N. R.; Battaglia, G. 3D Surface Functionalization of Emulsion-Templated Polymeric Foams. Macromolecules. 2014, 47(20), 7091–7098. DOI: 10.1021/ma500968q.
  • Ye, Y.; Wan, D.; Du, J.; Jin, M.; Pu, H. Dendritic Amphiphile Mediated Porous Monolith for Eliminating Organic Micropollutants from Water. J. Mater. Chem. A. 2015, 3(12), 6297–6300. DOI: 10.1039/C4TA07097F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.