966
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Experimental Test of a Process Upset in the EURO-GANEX Process and Spectroscopic Study of the Product

, , , , ORCID Icon & ORCID Icon

References

  • Management of Spent Nuclear Fuel and Its Waste, the European Academies’ Science Advisory Council (EASAC), Brussels, 2014, pp. 1–40.
  • Baron, P., National Programmes in Chemical Partitioning: A Status Report, 5245, Nuclear Energy Agency, Organisation for Economic Cooperation and Development, 2010, pp. 1–120.
  • Bourg, S.; Geist, A.; Adnet, J.-M.; Rhodes, C.; Hanson, B. C. Partitioning and Transmutation Strategy R&D for Nuclear Spent Fuel: The SACSESS and GENIORS Projects. EPJ Nucl. Sci. Technol. 2020, 6, 35. DOI: 10.1051/epjn/2019009.
  • Bourg, S.; Hill, C.; Caravaca, C.; Rhodes, C.; Ekberg, C.; Taylor, R.; Geist, A.; Modolo, G.; Cassayre, L.; Malmbeck, R., et al. ACSEPT–Partitioning Technologies and Actinide Science: Towards Pilot Facilities in Europe. Nucl. Eng. Des. 2011, 241, 3427–3435. DOI: 10.1016/j.nucengdes.2011.03.011.
  • Collins, E. D.; DelCul, G. D.; Spencer, B. B.; Jubin, R. T.; Maher, C.; Kim, I.-T.; Lee, H.; Fedorov, Y. S.; Saprykin, V. F.; Beznosyuk, V. I., et al. State-Of-The-Art Report on the Progress of Nuclear Fuel Cycle Chemistry, NEA No, 7267; OECD-NEA: Paris, France, 2018; pp. 1–300.
  • Eynde, G. V. D.; Pedoux, S.; Trtilek, R.; Fritz, L.; Evans, C.; Mathonnière, G.; Werf, J. V. D.; Lucibello, P.; Suzuki, K.; Sano, T., et al. Strategies and Considerations for the Back End of the Fuel Cycle, NEA 7469; Paris, France: OECD-NEA, 2021; pp. 1–72.
  • Poinssot, C.; Boullis, B.; Bourg, S. Role of Recycling in Advanced Nuclear Fuel Cycles. In Reprocessing and Recycling of Spent Nuclear Fuels; Taylor, R. J., Ed.; Woodhouse Publishing Ltd: Oxford, 2015; pp. 27-48.
  • Taylor, R.; Bodel, W.; Stamford, L.; Butler, G. A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle. Part 1: Wastes and Environmental Impacts. Energies. 2022, 15, 1433. DOI: 10.3390/en15041433.
  • Taylor, R.; Bodel, W.; Butler, G. A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle-Part Two: Economic Impacts. Energies. 2022, 15, 2472. DOI: 10.3390/en15072472.
  • González-Romero, E. M. Impact of Partitioning and Transmutation on the High Level Waste Management. Nucl. Eng. Des. 2011, 241, 3436–3444. DOI: 10.1016/j.nucengdes.2011.03.030.
  • Grenèche, D.; Quiniou, B.; Boucher, L.; Delpech, M.; Gonzalez, E.; Alvarez, F.; Cunado, M. A.; Serrano, A.; Cormenzana, J. L.; Kuckshinrichs, W., et al. RED-IMPACT: Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal. Synthesis Report Volume 15; Forschungszentrum Julich GmbH: Julich, 2008; pp. 1–187.
  • Nishihara, K.; Nakayama, S.; Morita, Y.; Oigawa, H.; Iwasaki, T. Impact of Partitioning and Transmutation on LWR High-Level Waste Disposal. J. Nucl. Sci. Technol. 2008, 45, 84–97. DOI: 10.1080/18811248.2008.9711418.
  • Nishihara, K.; Oigawa, H.; Nakayama, S.; Ono, K.; Shiotani, H. Impact of Partitioning and Transmutation on High-Level Waste Disposal for the Fast Breeder Reactor Fuel Cycle. J. Nucl. Sci. Technol. 2010, 47, 1101–1117. DOI: 10.1080/18811248.2010.9720977.
  • Salvatores, M.; Palmiotti, G. Radioactive Waste Partitioning and Transmutation Within Advanced Fuel Cycles: Achievements and Challenges. Prog. Part. Nucl. Phys. 2011, 66, 144–166. DOI: 10.1016/j.ppnp.2010.10.001.
  • Serp, J.; Poinssot, C.; Bourg, S. Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling. Energies. 2017, 10(9), 1445. DOI: 10.3390/en10091445.
  • Baron, P.; Cornet, S. M.; Collins, E. D.; DeAngelis, G.; Del Cul, G.; Fedorov, Y.; Glatz, J. P.; Ignatiev, V.; Inoue, T.; Khaperskaya, A., et al. A Review of Separation Processes Proposed for Advanced Fuel Cycles Based on Technology Readiness Level Assessments. Prog. Nucl. Energy. 2019, 117, 103091. DOI: 10.1016/j.pnucene.2019.103091.
  • Modolo, G.; Geist, A.; Miguirditchian, M. Minor Actinide Separations in the Reprocessing of Spent Nuclear Fuels: Recent Advances in Europe. In Reprocessing and Recycling of Spent Nuclear Fuels; Taylor, R. J., Ed.; Woodhouse Publishing Ltd: Oxford, 2015; pp. 245-288.
  • Moyer, B. A.; Lumetta, G. J.; Mincher, B. J. 11 - Minor Actinide Separation in the Reprocessing of Spent Nuclear Fuels: Recent Advances in the United States. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp. 289–312.
  • Nash, K. L.; Lumetta, G. J. Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Woodhouse Publishing Ltd: Oxford, 2011; pp. 1–492.
  • Natarajan, R. 9 - Reprocessing of Spent Fast Reactor Nuclear Fuels. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp. 213–243.
  • Poinssot, C.; Rostaing, C.; Greandjean, S.; Boullis, B. Recycling the Actinides, the Cornerstone of Any Sustainable Nuclear Fuel Cycles. Procedia Chem. 2012, 7, 349–357. DOI: 10.1016/j.proche.2012.10.055.
  • Geist, A.; Adnet, J.-M.; Bourg, S.; Ekberg, C.; Galán, H.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; Rhodes, C.; Taylor, R. An Overview of Solvent Extraction Processes Developed in Europe for Advanced Nuclear Fuel Recycling, Part 1 — Heterogeneous Recycling. Sep. Sci. Technol. 2020, 56, 1866–1881. DOI: 10.1080/01496395.2020.1795680.
  • Denniss, I. S.; Jeapes, A. P. Reprocessing Irradiated Fuel. In The Nuclear Fuel Cycle; Wilson, P. D., Ed.; Oxford Science Publications: Oxford, 1996; pp. 116-137.
  • Herbst, R. S.; Baron, P.; Nilsson, M. Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing. In Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Nash, K. L. Lumetta, G. J., Eds.; Woodhouse Publishing Ltd: Oxford, 2011; pp. 141–175.
  • Lewin, R. G.; Harrison, M. T. 15 - International Developments in Electrorefining Technologies for Pyrochemical Processing of Spent Nuclear Fuels. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp. 373–413.
  • Lyseid Authen, T.; Adnet, J.-M.; Bourg, S.; Carrott, M.; Ekberg, C.; Galán, H.; Geist, A.; Guilbaud, P.; Miguirditchian, M.; Modolo, G., et al. An Overview of Solvent Extraction Processes Developed in Europe for Advanced Nuclear Fuel Recycling, Part 2 — Homogeneous Recycling. Sep. Sci. Technol. 2022, 57, 1724–1744. DOI: 10.1080/01496395.2021.2001531.
  • Aneheim, E.; Ekberg, C.; Fermvik, A.; Foreman, M. R. S. J.; Grűner, B.; Hájková, Z.; Kvičalová, M. A TBP/BTBP-Based GANEX Separation Process—part 2: Ageing, Hydrolytic, and Radiolytic Stability. Solvent Extr. Ion Exch. 2011, 29, 157–175. DOI: 10.1080/07366299.2011.539462.
  • Aneheim, E.; Ekberg, C.; Fermvik, A.; Foreman, M. R. S. J.; Retegan, T.; Skarnemark, G. A TBP/BTBP-Based GANEX Separation Process. Part 1: Feasibility. Solvent Extr. Ion Exch. 2010, 28, 437–458. DOI: 10.1080/07366299.2010.480930.
  • Carrott, M.; Bell, K.; Brown, J.; Geist, A.; Gregson, C.; Hères, X.; Maher, C.; Malmbeck, R.; Mason, C.; Modolo, G., et al. Development of a New Flowsheet for Co-Separating the Transuranic Actinides: The “EURO-GANEX” Process. Solvent Extr. Ion Exch. 2014, 32, 447–467. DOI: 10.1080/07366299.2014.896580.
  • Miguirditchian, M.; Roussel, H.; Chareyre, L.; Baron, P. HA Demonstration in the Atalante Facility of the GANEX 2nd Cycle for the Grouped TRU Extraction. In Global 2009; American Nuclear Society: Paris, France, 2009; p. 9378.
  • Malmbeck, R.; Magnusson, D.; Bourg, S.; Carrott, M.; Geist, A.; Hérès, X.; Miguirditchian, M.; Modolo, G.; Müllich, U.; Sorel, C., et al. Homogenous Recycling of Transuranium Elements from Irradiated Fast Reactor Fuel by the EURO-GANEX Solvent Extraction Process. Radiochim. Acta. 2019, 107, 917–929. DOI: 10.1515/ract-2018-3089.
  • Lyseid Authen, T.; Wilden, A.; Halleröd, J.; Schneider, D.; Kreft, F.; Modolo, G.; Ekberg, C. Batch Tests for Optimisation of Solvent Composition and Process Flexibility of the CHALMEX FS-13 Process. Solvent Extr. Ion Exch. 2021, 39, 1–17. DOI: 10.1080/07366299.2020.1797988.
  • Lyseid Authen, T.; Wilden, A.; Schneider, D.; Kreft, F.; Modolo, G.; StJ Foreman, M. R.; Ekberg, C. Batch Flowsheet Test for a GANEX-Type Process: The CHALMEX FS-13 Process. Solvent Extr. Ion Exch. 2021, 40, 189–202. DOI: 10.1080/07366299.2021.1890372.
  • Carrott, M.; Maher, C.; Mason, C.; Sarsfield, M.; Taylor, R. TRU-SANEX”: A Variation on the EURO-GANEX and I-SANEX Processes for Heterogeneous Recycling of Actinides Np-Cm. Sep. Sci. Technol. 2016, 51, 2198–2213. DOI: 10.1080/01496395.2016.1202979.
  • Brown, J.; McLachlan, F.; Sarsfield, M. J.; Taylor, R. J.; Modolo, G.; Wilden, A. Plutonium Loading of Prospective Grouped Actinide Extraction (GANEX) Solvent Systems Based on Diglycolamide Extractants. Solvent Extr. Ion Exch. 2012, 30, 127–141. DOI: 10.1080/07366299.2011.609378.
  • Carrot, M. J.; Gregson, C. R.; Taylor, R. J. Neptunium Extraction and Stability in the GANEX Solvent: 0.2 M TODGA/0.5 M DMDOHEMA/Kerosene. Solvent Extr. Ion Exch. 2013, 31, 463–482. DOI: 10.1080/07366299.2012.735559.
  • Carrott, M.; Geist, A.; Hères, X.; Lange, S.; Malmbeck, R.; Miguirditchian, M.; Modolo, G.; Wilden, A.; Taylor, R. Distribution of Plutonium, Americium and Interfering Fission Products Between Nitric Acid and a Mixed Organic Phase of TODGA and DMDOHEMA in Kerosene, and Implications for the Design of the “EURO-GANEX” Process. Hydrometallurgy. 2015, 152, 139–148. DOI: 10.1016/j.hydromet.2014.12.019.
  • Plaue, J.; Gelis, A.; Czerwinski, K. Plutonium Third Phase Formation in the 30% TBP/Nitric Acid/Hydrogenated Polypropylene Tetramer System. Solvent Extr. Ion Exch. 2006, 24, 271–282. DOI: 10.1080/07366290600646814.
  • Geist, A.; Müllich, U.; Magnusson, D.; Kaden, P.; Modolo, G.; Wilden, A.; Zevaco, T. Actinide(iii)/Lanthanide(iii) Separation via Selective Aqueous Complexation of Actinides(iii) Using a Hydrophilic 2,6-Bis(1,2,4-Triazin-3-Yl)-Pyridine in Nitric Acid. Solvent Extr. Ion Exch. 2012, 30, 433–444. DOI: 10.1080/07366299.2012.671111.
  • Carrott, M. J.; Fox, O. D.; Maher, C. J.; Mason, C.; Taylor, R. J.; Sinkov, S. I.; Choppin, G. R. Solvent Extraction Behavior of Plutonium (IV) Ions in the Presence of Simple Hydroxamic Acids. Solvent Extr. Ion Exch. 2007, 25, 723–745. DOI: 10.1080/07366290701634560.
  • Hanson, B. 6 - Process Engineering and Design for Spent Nuclear Fuel Reprocessing and Recycling Plants. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp. 125–151.
  • Sypula, M.; Wilden, A.; Schreinemachers, C.; Malmbeck, R.; Geist, A.; Taylor, R.; Modolo, G. Use of Polyaminocarboxylic Acids as Hydrophilic Masking Agents for Fission Products in Actinide Partitioning Processes. Solvent Extr. Ion Exch. 2013, 3, 748–764. DOI: 10.1080/07366299.2012.700591.
  • Williams, L. G. 4 - Safety and Security Issues in the Reprocessing and Recycling of Spent Nuclear Fuels for Advanced Fuel Cycles. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp. 63–90.
  • Sutton, A., Initial Recovery of the Magnox Reprocessing Plant Following a Loss of Reductant Feed in the Solvent Extraction Process, in: International Conference on Nuclear Criticality Safety 2015 Curran Associates, Inc., Red Hook, New York, Charlotte, North Carolina, USA 2015, pp. 113–122.
  • McLachlan, F.; Taylor, R.; Whittaker, D.; Woodhead, D.; Geist, A. Modelling of Innovative SANEX Process Maloperations. Procedia Chem. 2016, 21, 109–116. DOI: 10.1016/j.proche.2016.10.016.
  • Geist, A.; Taylor, R.; Ekberg, C.; Guilbaud, P.; Modolo, G.; Bourg, S. The SACSESS Hydrometallurgy Domain — an Overview. Procedia Chem. 2016, 21, 218–222. DOI: 10.1016/j.proche.2016.10.031.
  • Bourg, S.; Guilbaud, P.; Mendes, E.; Ekberg, C.; Gibilaro, M.; Soucek, P.; Modolo, G.; Geist, A.; Boo, E.; Duplantier, B., et al., SACSESS: Final Report, SACSESS – R01.3 – rev 0, CEA, France, 2016, pp. 1–35.
  • Macerata, E.; Mossini, E.; Scaravaggi, S.; Mariani, M.; Mele, A.; Panzeri, W.; Boubals, N.; Berthon, L.; Charbonnel, M.-C.; Sansone, F., et al. Hydrophilic Clicked 2,6-Bis-Triazolyl-Pyridines Endowed with High Actinide Selectivity and Radiochemical Stability: Toward a Closed Nuclear Fuel Cycle. J. Am. Chem. Soc. 2016, 138, 7232–7235. DOI: 10.1021/jacs.6b03106.
  • Wilden, A.; Schneider, D.; Paparigas, Z.; Henkes, M.; Kreft, F.; Geist, A.; Mossini, E.; Macerata, E.; Mariani, M.; Gullo, M. C., et al. Selective Actinide(iii) Separation Using 2,6-Bis[1-(Propan-1-Ol)-1,2,3-Triazol-4-Yl]pyridine (PyTri-Diol) in the Innovative-SANEX Process: Laboratory Scale Counter Current Centrifugal Contactor Demonstration. Radiochim. Acta. 2022, 110, 515–525. DOI: 10.1515/ract-2022-0014.
  • Taylor, R.; Bourg, S.; Glatz, J.-P.; Modolo, G. Development of Actinide Separation Processes for Future Nuclear Fuel Cycles in Europe. Nucl. Future. 2015, 11, 38–43.
  • Bell, K. The PuMa Lab at NNL. Nucl. Future. 2012, 8, 35–39.
  • Brown, J.; Campbell, C.; Carrigan, C.; Carrott, M.; Greenough, K.; Maher, C.; McLuckie, B.; Mason, C.; Gregson, C.; Griffiths, T., et al. Americium and Plutonium Purification by Extraction (The AMPPEX Process): Development of a New Method to Separate 241am from Aged Plutonium Dioxide for Use in Space Power Systems. Prog. Nucl. Energy. 2018, 106, 396–416. DOI: 10.1016/j.pnucene.2018.02.008.
  • Baker, A.; Fells, A.; Carrott, M. J.; Maher, C. J.; Hanson, B. C. Process Intensification of Element Extraction Using Centrifugal Contactors in the Nuclear Fuel Cycle. Chem. Soc. Rev. 2022, 51, 3964–3999. DOI: 10.1039/D2CS00192F.
  • Connick, R. E.; Kasha, M.; McVey, W. H.; Sheline, G. E. Spectrophotometric Studies of Plutonium in Aqueous Solution. In The Transuranium Elements; Seaborg, G. T., Katz, J. J. Manning, W. M., Eds.; McGraw-Hill Book Company: New York, 1949; pp. 559–601.
  • Ockenden, D. W.; Welch, G. A. 653. The Preparation and Properties of Some Plutonium Compounds. Part V. Colloidal Quadrivalent Plutonium. J. Chem. Soc. (Resumed) 1956, 3358–3363. DOI:10.1039/jr9560003358.
  • Hindman, J. C. Ionic and Molecular Species of Plutonium in Solution. In The Actinide Elements; Seaborg, G. T. Katz, J. J., Eds.; McGraw-Hill Book Company: USA, Ann Arbor, 1954; pp. 301–370.
  • Cleveland, J. M., The Chemistry of Plutonium, In, American Nuclear Society, La Grange Park, 1979, pp. 396–409.
  • Neck, V.; Altmaier, M.; Fanghänel, T. Solubility of Plutonium Hydroxides/Hydrous Oxides Under Reducing Conditions and in the Presence of Oxygen. C. R. Chim. 2007, 10, 959–977. DOI: 10.1016/j.crci.2007.02.011.
  • Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. Plutonium. In Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J. Katz, J. J., Eds.; Springer: AA Dordrecht, 2006; pp. 813–1264.
  • Cleveland, J. M. Solution Chemistry of Plutonium. In Plutonium Handbook; Wick, O. J., Ed.; American Nuclear Society: La Grange Park, 1980; pp. 403–520.
  • Altmaier, M.; Gaona, X.; Fellhauer, D.; Clark, D. L.; Runde, W. H.; Hobart, D. E. Aqueous Solution and Coordination Chemistry of Plutonium. In Plutonium Handbook; Clark, D. L., Geeson, D. A. Hanrahan, R. J., Eds.; American Nuclear Society: La Grange Park, 2019; pp. 1543–1726.
  • Brunstad, A. Polymerization and Precipitation of Plutonium(iv) in Nitric Acid. Ind. Eng. Chem. 1959, 51, 38–40. DOI: 10.1021/ie50589a031.
  • Paviet-Hartmann, P.; Senentz, G. Prevention of Pu(iv) Polymerization in a Purex-Based Process. In Global 2007; American Nuclear Society: Boise, Idaho, 2007; pp. 1865–1869.
  • Lloyd, M. H.; Haire, R. G. The Chemistry of Plutonium in Sol-Gel Processes. Radiochim. Acta. 1978, 25, 139–148. DOI: 10.1524/ract.1978.25.34.139.
  • Scoazec, H.; Pasquiou, J. Y.; Germain, M., Some Plutonium IV Polymers Properties in PUREX Process, in: I.Chem.E. Symposium Series No.119, Rugby, UK: Institution of Chemical Engineers, 1990, pp. 221–233.
  • Walther, C.; Cho, H. R.; Marquardt, C. M.; Neck, V.; Seibert, A.; Yun, J. I.; Fanghänel, T. Hydrolysis of Plutonium(iv) in Acidic Solutions: No Effect of Hydrolysis on Absorption-Spectra of Mononuclear Hydroxide Complexes. Radiochim. Acta. 2007, 95, 7–16. DOI: 10.1524/ract.2007.95.1.7.
  • Soderholm, L.; Almond, P. M.; Skanthakumar, S.; Wilson, R. E.; Burns, P. C. The Structure of the Plutonium Oxide Nanocluster [Pu38o56cl54(h2o)8]14−. Angew. Chem. Int. Ed. 2008, 47, 298–302. DOI: 10.1002/anie.200704420.
  • Wilson, R. E.; Skanthakumar, S.; Soderholm, L. Separation of Plutonium Oxide Nanoparticles and Colloids. Angew. Chem. Int. Ed. 2011, 50, 11234–11237. DOI: 10.1002/anie.201105624.
  • Sigmon, G. E.; Hixon, A. E. Extension of the Plutonium Oxide Nanocluster Family to Include {pu16} and {pu22}. Chem. Eur. J. 2019, 25, 2463–2466. DOI: 10.1002/chem.201805605.
  • Ekberg, C.; Larsson, K.; Skarnemark, G.; Ödegaard-Jensen, A.; Persson, I. The Structure of Plutonium(IV) Oxide as Hydrolysed Clusters in Aqueous Suspensions. Dalton Trans. 2013, 42, 2035–2040. DOI: 10.1039/C2DT32185H.
  • Tamain, C.; Dumas, T.; Guillaumont, D.; Hennig, C.; Guilbaud, P. First Evidence of a Water-Soluble Plutonium(iv) Hexanuclear Cluster. Eur. J. Inorg. Chem. 2016, 2016, 3536–3540. DOI: 10.1002/ejic.201600656.
  • Chupin, G.; Tamain, C.; Dumas, T.; Solari, P. L.; Moisy, P.; Guillaumont, D. Characterization of a Hexanuclear Plutonium(iv) Nanostructure in an Acetate Solution via Visible–Near Infrared Absorption Spectroscopy, Extended X-Ray Absorption Fine Structure Spectroscopy, and Density Functional Theory. Inorg. Chem. 2022, 61, 4806–4817. DOI: 10.1021/acs.inorgchem.1c02876.
  • Muscatello, A. C.; Navratil, J. D.; Killion, M. E. Solvent Extraction of Plutonium (IV) Polymer by Dihexyl-N, N-Diethyl-Carbamoylmethylphosphonate (DHDECMP. Sep. Sci. Technol. 1983, 18, 1731–1746. DOI: 10.1080/01496398308056124.
  • Thiyagarajan, P.; Diamond, H.; Soderholm, L.; Horwitz, E. P.; Toth, L. M.; Felker, L. K. Plutonium(iv) Polymers in Aqueous and Organic Media. Inorg. Chem. 1990, 29, 1902–1907. DOI: 10.1021/ic00335a028.
  • Liu, Q.; Zhou, J.; Zhu, L.; Zhang, Y.; Li, D.; Yang, S.; Tian, G. Extraction of Actinides Including Neptunyl (V) by Asymmetrical N,N’-Dimethyl-N,N’-Dioctyl-Diglycolamide in Comparison with Symmetrical N,N,N’,N’-Tetraoctyl-Diglycolamide—sterically Structural Insight into Actinide Separations†. Solvent Extr. Ion Exch. 2020, 38, 485–495. DOI: 10.1080/07366299.2020.1765493.
  • McNaught, A. D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology, 2nd Ed. (The “Gold Book”); Blackwell Scientific Publications: Oxford, 1997 (Online version (2019-) created by S. J. Chalk). DOI: 10.1351/goldbook
  • Wilson, R.; Hu, Y.; Nitsche, H., Detection and Quantification of Pu(III, IV, V, and VI) Using a 1.0-meter Liquid Core Waveguide, in, Lawrence Berkeley National Laboratory, 2005. https://escholarship.org/uc/item/15k4s3p3.
  • Lumetta, G. J.; Heller, F. D.; Hall, G. B.; Asmussen, S. E.; Sinkov, S. I. Optical Spectroscopic Investigation of Hexavalent Actinide Ions in N-Dodecane Solutions of Tri-Butyl Phosphate. Solvent Extr. Ion Exch. 2021, 39, 56–73. DOI: 10.1080/07366299.2020.1805051.