165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Solvent Phase Optimizations Improve Correlations with Experimental Stability Constants for Aqueous Lanthanide Complexes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • King, A. H.; Eggert, R. G.; Gschneidner, K. A. The Rare Earths as Critical Materials. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier, 2016; Vol. 50, pp. 19–46. DOI: 10.1016/bs.hpcre.2016.08.001.
  • McCullough, E.; Nassar, N. T. Assessment of Critical Minerals: Updated Application of an Early-Warning Screening Methodology. Miner. Econ. 2017, 30(3), 257–272. DOI: 10.1007/s13563-017-0119-6.
  • Nash, K. L. The Chemistry of TALSPEAK: A Review of the Science. Solvent Extr Ion Exchange. 2015, 33(1), 1–55. DOI: 10.1080/07366299.2014.985912.
  • Vukovic, S.; Hay, B. P.; Bryantsev, V. S. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory. Inorg. Chem. 2015, 54(8), 3995–4001. DOI: 10.1021/acs.inorgchem.5b00264.
  • Bryantsev, V. S.; Diallo, M. S.; Goddard, W. A., III. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models. J. Phys. Chem B. 2008, 112(32), 9709–9719. DOI: 10.1021/jp802665d.
  • Ho, J. Are Thermodynamic Cycles Necessary for Continuum Solvent Calculation of PK a S and Reduction Potentials? Phys. Chem. Chem. Phys. 2015, 17(4), 2859–2868. DOI: 10.1039/C4CP04538F.
  • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A. 1988, 38(6), 3098–3100. DOI: 10.1103/PhysRevA.38.3098.
  • Becke, A. D. Density-functional Thermochemistry III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98(7), 5648–5652. DOI: 10.1063/1.464913.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37(2), 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Aprà, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J., et al. NWChem: Past, Present, and Future. J. Chem. Phys. 2020, 152(18), 184102.
  • Cao, X.; Dolg, M. Valence Basis Sets for Relativistic Energy-Consistent Small-Core Lanthanide Pseudopotentials. J. Chem. Phys. 2001, 115(16), 7348–7355. DOI: 10.1063/1.1406535.
  • Cao, X.; Dolg, M. Segmented Contraction Scheme for Small-Core Lanthanide Pseudopotential Basis Sets. J Mol Struct Theochem. 2002, 581(1–3), 139–147. DOI: 10.1016/S0166-1280(01)00751-5.
  • Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-Consistent Molecular-Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104(10), 2797–2803. DOI: 10.1021/ja00374a017.
  • Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-Consistent Molecular-Orbital Methods. Further Extensions of Gaussian—type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56(5), 2257–2261. DOI: 10.1063/1.1677527.
  • Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theoret. Chim. Acta. 1973, 28(3), 213–222. DOI: 10.1007/BF00533485.
  • Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-consistent Molecular-orbital Methods IX. An Extended Gaussian-type Basis for Molecular-orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54(2), 724–728. DOI: 10.1063/1.1674902.
  • Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4(3), 294–301. DOI: 10.1002/jcc.540040303.
  • Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent Molecular Orbital Methods XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77(7), 3654–3665. DOI: 10.1063/1.444267.
  • Spitznagel, G. W.; Clark, T.; von Ragué Schleyer, P.; Hehre, W. J. An Evaluation of the Performance of Diffuse Function-Augmented Basis Sets for Second Row Elements, Na-Cl: Diffuse Function-Augmented Basis Sets. J. Comput. Chem. 1987, 8(8), 1109–1116. DOI: 10.1002/jcc.540080807.
  • Vo, M. N.; Bryantsev, V. S.; Johnson, J. K.; Keith, J. A. Quantum Chemistry Benchmarking of Binding and Selectivity for Lanthanide Extractants. Int. J. Quantum Chem. 2018, 118(7), 7. DOI: 10.1002/qua.25516.
  • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem B. 2009, 113(18), 6378–6396. DOI: 10.1021/jp810292n.
  • Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72(1), 650–654. DOI: 10.1063/1.438955.
  • McLean, A. D.; Chandler, G. S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z =11–18. J. Chem. Phys. 1980, 72(10), 5639–5648. DOI: 10.1063/1.438980.
  • Martell, A. E.; Smith, R. M. Critical Stability Constants; New York: Plenum Press, 1974; Vol. 1-7.
  • Davies, C. W. Ion Association; Washington, DC: Butterworths, 1962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.