1,174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Selective Separation of 4,4’-Methylenedianiline, Isophoronediamine and 2,4-Toluenediamine from Enzymatic Hydrolysis Solutions of Polyurethane

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal - More Than Climate Neutrality. Intereconomics. 2021, 56, 99–107. DOI: 10.1007/s10272-021-0963-z.
  • Kemona, A.; Piotrowska, M. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers. 2020, 12(8), 1752. DOI: 10.3390/polym12081752.
  • Font, R.; Fullana, A.; Caballero, J.; Candela, J.; Garcı́a, A. Pyrolysis Study of Polyurethane. J. Anal. Appl. Pyrolysis. 2001, 58-59, 63–77. DOI: 10.1016/S0165-2370(00)00138-8.
  • Zia, K. M.; Bhatti, H. N.; Ahmad Bhatti, I. Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review. React. Funct. Polym. 2007, 67, 675–692. DOI: 10.1016/j.reactfunctpolym.2007.05.004.
  • Yang, W.; Dong, Q.; Liu, S.; Xie, H.; Liu, L.; Li, J. Recycling and Disposal Methods for Polyurethane Foam Wastes. Proc.Environ. Sci. 2012, 16, 167–175. DOI: 10.1016/j.proenv.2012.10.023.
  • Anuar Sharuddin, S. D.; Abnisa, F.; Wan Daud, W. M. A.; Aroua, M. K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manage. 2016, 115, 308–326. DOI: 10.1016/j.enconman.2016.02.037.
  • Datta, J.; Kopczyńska, P.; Simón, D.; Rodríguez, J. F. Thermo-Chemical Decomposition Study of Polyurethane Elastomer Through Glycerolysis Route with Using Crude and Refined Glycerine as a Transesterification Agent. J Polym. Environ. 2018, 26, 166–174. DOI: 10.1007/s10924-016-0932-y.
  • Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and Biological Catalysis for Plastics Recycling and Upcycling. Nat. Catal. 2021, 4, 539–556. DOI: 10.1038/s41929-021-00648-4.
  • Wei, R.; Zimmermann, W. Microbial Enzymes for the Recycling of Recalcitrant Petroleum-Based Plastics: How Far are We? Microb. Biotechnol. 2017, 10, 1308–1322. DOI: 10.1111/1751-7915.12710.
  • Utomo, R. N. C.; Li, W. J.; Tiso, T.; Eberlein, C.; Doeker, M.; Heipieper, H. J.; Jupke, A.; Wierckx, N.; Blank, L. M. Defined Microbial Mixed Culture for Utilization of Polyurethane Monomers. ACS Sustainable Chem. Eng. 2020, 8, 17466–17474. DOI: 10.1021/acssuschemeng.0c06019.
  • Ballerstedt, H.; Tiso, T.; Wierckx, N.; Wei, R.; Averous, L.; Bornscheuer, U.; O’Connor, K.; Floehr, T.; Jupke, A.; Klankermayer, J.; et al. MIXed Plastics Biodegradation and UPcycling Using Microbial Communities: EU Horizon 2020 Project MIX-UP Started January 2020. Environ. Sci. Eur. 2021, 33, 99. DOI: 10.1186/s12302-021-00536-5.
  • Shah, Z.; Gulzar, M.; Hasan, F.; Shah, A. A. Degradation of Polyester Polyurethane by an Indigenously Developed Consortium of Pseudomonas and Bacillus Species Isolated from Soil. Polym. Degrad. Stab. 2016, 134, 349–356. DOI: 10.1016/j.polymdegradstab.2016.11.003.
  • Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of Biological Degradation of Polyurethanes. Biochem. Adv. 2020, 39, 107457. DOI: 10.1016/j.biotechadv.2019.107457.
  • Sonnenschein, M. F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons: Hoboken, New Jersey, 2015.
  • Wierckx, N. J. P.; Ballerstedt, H.; de Bont, J. A. M.; Wery, J. Engineering of Solvent-Tolerant Pseudomonas Putida S12 for Bioproduction of Phenol from Glucose. Appl. Environ. Microbiol. 2005, 71, 8221–8227. DOI: 10.1128/AEM.71.12.8221-8227.2005.
  • Ackermann, Y. S.; Li, W. J.; de Hipt, L. O.; Niehoff, P. J.; Casey, W.; Polen, T.; Köbbing, S.; Ballerstedt, H.; Wynands, B.; O’Connor, K.; et al. Engineering Adipic Acid Metabolism in Pseudomonas Putida. Metab. Eng. 2021, 67, 29–40. DOI: 10.1016/j.ymben.2021.05.001.
  • ECHA Database. European Chemicals Agency database. https://www.echa.europa.eu/.
  • de Witt, J.; Ernst, P.; Gätgens, J.; Noack, S.; Hiller, D.; Wynands, B.; Wierckx, N. Characterization and Engineering of Branched Short-Chain Dicarboxylate Metabolism in Pseudomonas Reveals Resistance to Fungal 2-Hydroxyparaconate. Metab. Eng. 2023, 75, 205–216. DOI: 10.1016/j.ymben.2022.12.008.
  • Bednarz, A.; Spieß, A. C.; Pfennig, A. Reactive and Physical Extraction of Bio-Based Diamines from Fermentation Media. J. Chem. Tech. Bio. 2017, 92, 1817–1824. DOI: 10.1002/jctb.5183.
  • Rosinha Grundtvig, I. P.; Heintz, S.; Krühne, U.; Gernaey, K. V.; Adlercreutz, P.; Hayler, J. D.; Wells, A. S.; Woodley, J. M. Screening of Organic Solvents for Bioprocesses Using Aqueous-Organic Two-Phase Systems. Biochem. Adv. 2018, 36, 1801–1814. DOI: 10.1016/j.biotechadv.2018.05.007.
  • Doeker, M.; Grabowski, L.; Rother, D.; Jupke, A. In situ Reactive Extraction with Oleic Acid for Process Intensification in Amine Transaminase Catalyzed Reactions. Green Chem. 2022, 24, 295–304. DOI: 10.1039/D1GC03289E.
  • Akhtar, M. K.; Dandapani, H.; Thiel, K.; Jones, P. R. Microbial Production of 1-Octanol: A Naturally Excreted Biofuel with Diesel-Like Properties. Metab. Eng. Commun. 2015, 2, 1–5. DOI: 10.1016/j.meteno.2014.11.001.
  • Doeker, M.; Hüttche, V.; Jupke, A. Reactive Extraction for the Recovery of Primary Amines from Aqueous Streams. Sep. Purif. Techn. 2021, 277, 118229. DOI: 10.1016/j.seppur.2020.118229.
  • Kocks, C.; Krekel, C. M.; Gausmann, M.; Jupke, A. Determination of the Metastable Zone Width and Nucleation Parameters of Succinic Acid for Electrochemically Induced Crystallization. Crystals. 2021, 11, 1090. DOI: 10.3390/cryst11091090.
  • Health Canada. Screening Assessment for Methylenediphenyl Diisocyanates and Methylenediphenyl Diamines: Chemical Abstracts Service Registry Numbers 101-68-8; 2536-05-2, 5873-54-1; 9016-87-9; 26447-40-5; 101-77-9; 25214-70-4 / Environment and Climate Change Canada, Health Canada. 2017.
  • Tiso, T.; Ihling, N.; Kubicki, S.; Biselli, A.; Schonhoff, A.; Bator, I.; Thies, S.; Karmainski, T.; Kruth, S.; Willenbrink, A. L.; et al. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas Putida. Front. Bioeng. Biotechnol. 2020, 8, 976. DOI: 10.3389/fbioe.2020.00976.
  • Hansch, C.; Leo, A.; Hoekman, D. Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, 1995.
  • Qin, W.; Li, Z.; Dai, Y. Extraction of Monocarboxylic Acids with Trioctylamine: Equilibria and Correlation of Apparent Reactive Equilibrium Constant. Ind. Eng. Chem. Res. 2003, 42, 6196–6204. DOI: 10.1021/ie021049b.
  • Rowe, R.; Sheskey, P. Handbook of Pharmaceutical Excipients 6th ed.; Quinn, M. Ed.; APhA (PhP) Pharmaceutical Press: London, 2009.
  • Espinosa, M. J. C.; Blanco, A. C.; Schmidgall, T.; Atanasoff-Kardjalieff, A. K.; Kappelmeyer, U.; Tischler, D.; Pieper, D. H.; Heipieper, H. J.; Eberlein, C. Toward Biorecycling: Isolation of a Soil Bacterium That Grows on a Polyurethane Oligomer and Monomer. Front. Microbiol. 2020, 11, 404. DOI: 10.3389/fmicb.2020.00404.