145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An Integrated Model Combining Mass Transfer and Chemical Reaction for Co-Decontamination Extraction Step of PUREX Process in a Pulsed Extraction Column

, , , , &

References

  • Khooshechin, S.; Moosavian, M. A.; Safdari, J.; Mallah, M. H.; Sadr, B. M. Flooding Behavior of the Standard Liquid–Liquid Extraction Systems in a Pilot Plant L-Type Pulse Packed Extraction Column: Experimental Study. Prog. Nucl. Energy. 2023, 158, 158. DOI: 10.1016/j.pnucene.2023.104597.
  • Sen, N.; Singh, K. K.; Mukhopadhyay, S.; Shenoy, K. T. Drop Formation at a Hole in a Plate Submerged in Quiescent Continuous Phase: Comparison of Plain Hole and Nozzle Hole. Chem. Eng. Commun. 2019, 206(10), 1317–1336. DOI: 10.1080/00986445.2018.1557638.
  • Fells, A.; De Santis, A.; Colombo, M.; Theobald, D. W.; Fairweather, M.; Muller, F.; Hanson, B. Predicting Mass Transfer in Liquid–Liquid Extraction Columns. Processes. 2022, 10(5), 968. DOI: 10.3390/pr10050968.
  • Su, Z. N.; Wang, Y.; Tan, B. R.; Cheng, Q. Z.; Duan, X. F.; Xu, D. B.; Tian, L. L.; Qi, T. Performance Prediction of Disc and Doughnut Extraction Columns Using Bayes Optimization Algorithm-Based Machine Learning Models. Chem. Eng. Process. 2023, 183. DOI: 10.1016/j.cep.2022.109248.
  • Ren, F.; Zhou, Z. Reprocessing of Nuclear Fuel Abroad; Atomic Energy Press: Beijing, China, 2006.
  • Torab-Mostaedi, M.; Jalilvand, H.; Outokesh, M. Slip Velocity in Pulsed Disc and Doughnut Extraction Columns. Chem. Ind. Chem. Eng. Q. 2011, 17(3), 333–339. DOI: 10.2298/CICEQ110123019T.
  • Torab-Mostaedi, M.; Ghaemi, A.; Asadollahzadeh, M. Flooding and Drop Size in a Pulsed Disc and Doughnut Extraction Column. Chem. Eng. Res. Des. 2011, 89(12), 2742–2751. DOI: 10.1016/j.cherd.2011.06.006.
  • Torab-Mostaedi, M.; Jalilvand, H.; Outokesh, M. Dispersed Phase Holdup In A Pulsed Disc And Doughnut Extraction Column. Braz. J. Chem. Eng. 2011, 28(2), 313–323. DOI: 10.1590/S0104-66322011000200016.
  • Yi, H.; Smith, K. H.; Fei, W. Y.; Stevens, G. W. CFD Simulation of Two-Phase Flow in a Hybrid Pulsed Sieve-Plate Solvent Extraction Column: Prediction of Holdup and Axial-Dispersion Coefficients. Solvent. Extr. Ion Exch. 2019, 38(1), 88–102. DOI: 10.1080/07366299.2019.1691300.
  • Yu, X.; Zhou, H.; Zheng, Q.; Jing, S.; Lan, W. J.; Li, S. W. Determining Axial Dispersion Coefficients of Pilot-Scale Annular Pulsed Disc and Doughnut Columns. Chin. J. Chem. Eng. 2020, 28(6), 1504–1513. DOI: 10.1016/j.cjche.2020.03.024.
  • Khooshechin, S.; Safdari, J.; Moosavian, M. A.; Mallah, M. H. Use of Axial Dispersion and Plug Flow Models for Determination of Axial Mixing and Mass Transfer Coefficient in an L-Shaped Pulsed Packed Extraction Column. Can. J. Chem. Eng. 2019, 97(9), 2536–2547. DOI: 10.1002/cjce.23502.
  • Zhou, H.; Yu, X.; Wang, B.; Jing, S.; Lan, W. J.; Li, S. W. Breakup Model of Oscillating Drops in Turbulent Flow Field. Chem. Eng. Sci. 2021, 247(6), 117036. DOI: 10.1016/j.ces.2021.117036.
  • Watson, S. B.; Rainey, R. H. Modifications of the SEPHIS Computer Code for Calculating the Purex Solvent Extraction System; TN: Oak Ridge National Lab, 1975.
  • Scotten, W. C. SOLVEX: A Computer Program for Simulation of Solvent Extraction Processes; Aiken: Savannah River Lab, 1975.
  • Naito, M.; Suto, T.; Asakawa, K.; Kashiwagi, E. A Computer Code for Simulating the PUREX Solvent Extraction Process; Ibaraki-ken, Japan: TOKAI WORKS Power Reactor and Nuclear Fuel Development Corporation, 1999.
  • Gonda, K.; Matsuda, T. Solvent Extraction Calculation Model for Purex Process in Pulsed Sieve Plate Column. J. Nucl. Sci. Technol. 1986, 23(10), 883–895. DOI: 10.1080/18811248.1986.9735072.
  • Tachimori, S. EXTRA·M: A Computing Code System for Analysis of the Purex Process with Mixer Settlers for Reprocessing; Japan Atomic Energy Research Institute: Tokyo, Japan, 1994.
  • Rubin, R. T. SEPHIS-A Modified Mathematical Model for Calculating Distribution Ratios for U (VI), Pu (IV), and Nitric Acid in the Uranyl Nitrate-Plutonium (IV) Nitrate-Nitric Acid-Water Tributyl Phosphate System; TN: Oak Ridge National Lab, 1980.
  • Natarajan, R.; Pandey, N. K.; Vijayakumar, V.; Subbarao, R. V. Modeling and Simulation of Extraction Flowsheet for FBR Fuel Reprocessing. Presented at Atalante 2012 International Conference on Nuclear Chemistry for Sustainable Fuel Cycles (ATALANTE), Montpellier, France, MO, Sep 03-07, 2012; pp. 302–308. DOI: 10.1016/j.proche.2012.10.048.
  • Richardson, G. L.; Swanson, J. L. Plutonium Partitioning in the Purex Process with Hydrazine-Stabilized Hydroxylamine Nitrate; Hanford Engineering Development Lab: Richland, WA, USA, 1975.
  • Rozen, A. M.; Andrutskii, L. G.; Vlasov, V. S. Improved Mathematical Models of Actinide Extraction by 30% Solutions of the Tri-N-Butylphosphate in Diluents. Sov. Atom. Energy. 1987, 62(4), 264–271. DOI: 10.1007/BF01123365.
  • Ochkin, A.; Gladilov, D.; Nekhaevskiy, S.; Merkushkin, A. Activity Coefficients of Uranyl Nitrate and Nitric Acid in Aqueous Mixtures. Presented at the 5th International Conference on Nuclear Chemistry for Sustainable Fuel Cycles (ATALANTE), Montpellier, France, MO, Jun 05-10, 2016. pp. 87–92. DOI: 10.1016/j.proche.2016.10.013.
  • Kanth, M.; Pushpavanam, S.; Narasimhan, S.; Murty, B. N. Unified Framework for Modeling Reactive Extraction of Metals: Illustration on Plutonium (IV) Extraction with TBP. Ind. Eng. Chem. Res. 2019, 58(45), 20788–20796. DOI: 10.1021/acs.iecr.9b03899.
  • Tan, B. R.; Chang, C.; Xu, D. B.; Wang, Y.; Qi, T. Modeling of the Competition Between Uranyl Nitrate and Nitric Acid Upon Extraction with Tri-n-Butyl Phosphate. ACS Omega. 2020, 5(21), 12174–12183. DOI: 10.1021/acsomega.0c00583.
  • Gregson, C.; Boxall, C.; Carrott, M.; Edwards, S.; Sarsfield, M.; Taylor, R.; Woodhead, D. Neptunium (V) Oxidation by Nitrous Acid in Nitric Acid. Presented at Atalante 2012 International Conference on Nuclear Chemistry for Sustainable Fuel Cycles (ATALANTE), Montpellier, France, MO, Sep 03-07, 2012. pp.398–403. DOI: 10.1016/j.proche.2012.10.062.
  • Koltunov, V. S.; Taylor, R. J.; Marchenko, V. I.; Mezhov, E.; Zhuravleva, A.; I, G.; Dvoeglazov, K. N.; Savilova, O. A. Kinetics and Mechanisms of Np(vi) and Np(v) Reductions by U(IV) in TBP Solutions. J. Nucl. Sci. Technol. 2002, 39(sup3), 351–354. DOI: 10.1080/00223131.2002.10875481.
  • Tochiyama, O.; Nakamura, Y.; Katayama, Y.; Inoue, Y. Kinetics of Nitrous Acid-Catalyzed Oxidation of Neptunium in Nitric Acid-TBP Extraction System. J. Nucl. Sci. Technol. 1995, 32(2), 118–124. DOI: 10.1080/18811248.1995.9731681.
  • Marchenko, V. I.; Koltunov, V. S.; Dvoeglazov, K. N. Kinetics and Mechanisms of Redox Reactions of U, Pu, and Np in Tributyl Phosphate Solutions. Radiochem. 2010, 52, 111–126. DOI: 10.1134/S1066362210020013.
  • Birkett, J. E.; Carrott, M. J.; Fox, O. D.; Jones, C. J.; Maher, C. J.; Roube, C. V.; Taylor, R. J.; Woodhead, D. A. Controlling Neptunium and Plutonium within Single Cycle Solvent Extraction Flowsheets for Advanced Fuel Cycles. J. Nucl. Sci. Technol. 2007, 44(3), 337–343. DOI: 10.1080/18811248.2007.9711291.
  • Verma, P.; Mohapatra, P. Fate of Neptunium in Nuclear Fuel Cycle Streams: State-Of-The Art on Separation Strategies. Radiochim. Acta. 2022, 110(6–9), 527–548. DOI: 10.1515/ract-2022-0008.
  • Aslanishvili, N. A.; Mefod’eva, M. P.; Bukhtiyarova, T. N.; Krot, N. N. Effect of Solvent on Neptunium (V) Disproportionation in Organic Media. Sov. Radiochem. 1975, 27(4), 570–572.
  • Frolova, L. M.; Timofeev, G. A.; Rykov, A. G. Kinetics of Uranium(iv)-Neptunium(vi) Reaction in Tributyl Phosphate Solutions. Sov. Radiochem. 1973, 15(6), 867–868.
  • Rykov, A. G.; Yakovlev, G. N. Study of Redox Reactions of Actinide Elements. Part I. Kinetics of the Reaction Between Neptunium(iv) and Neptunium(vi) in Perchlorate Solutions. Sov. Radiochem. 1966, 8(1), 27–32.
  • Moulin, J. P.; Kikindai, T. Kinetics of the Oxidation Reaction of Tetravalent Neptunium by Nitric Acid, Catalyzed by Nitrous Acid. C. R. Hebd. Seances Acad. 1976, 283, 711–714. DOI: 10.1002/chin.197717024.
  • Taylor, R. J.; Koltunov, V. S.; Savilova, O. A.; Zhuravleva, G. I.; Denniss, I. S.; Wallwork, A. L. The Oxidation of Neptunium(iv) by Nitric Acid in 100% TBP and Diluted Tbp/n-Dodecane Solutions. J. Alloys. Compd. 1998, 271-273, 817–820. DOI: 10.1016/S0925-8388(98)00225-4.
  • Kumar, S.; Koganti, S. B. Prediction of Densities of Mixed Aqueous Solutions of Electrolytes-UO2(NO3)2, Pu(no3)4 and Nitric Acid. J. Nucl. Sci. Technol. 2012, 34(4), 410–412. DOI: 10.1080/18811248.1997.9733682.
  • Kumar, S.; Koganti, S. B. Prediction of Densities of Mixed Organic Solutions Containing UO2(NO3)2 and Nitric Acid. J. Nucl. Sci. Technol. 2012, 35(4), 309–312. DOI: 10.1080/18811248.1998.9733861.
  • Haynes, W. M. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, 2016.
  • Wu, Q.; Wang, J.; Zhang, T. Solvent Extraction Equipment for Nuclear Fuel Reprocessing Engineering; China Atomic Energy Press: Beijing, China, 2012; pp. 134–135.
  • Kumar, A.; Hartland, S. J. I.; Research, E. C. A Unified Correlation for the Prediction of Dispersed-Phase Hold-Up in Liquid-Liquid Extraction Columns. Ind. Eng. Chem. Res. 1995, 34(11), 3925–3940. DOI: 10.1021/ie00038a032.
  • Puzikov, E. A.; Zilberman, B. Y.; Fedorov, Y. S.; Blazheva, I. V.; Kudinov, A. S.; Goletskiy, N. D.; Ryabkov, D. V. A. New Approach to Simulation of Extraction Equilibria in the Purex Process. Solvent Extr. Ion Exch. 2015, 33(4), 362–384. DOI: 10.1080/07366299.2014.993238
  • Tachimori, S. Numerical Simulation for Chemical Reactions of Actinide Elements in Aqueous Nitric Acid Solution. J. Nucl. Sci. Technol. 1991, 28(3), 218–227. DOI: 10.1080/18811248.1991.9731347.
  • Chen, H. Y.; Taylor, R. J.; Jobson, M.; Woodhead, D. A.; Boxall, C.; Masters, A. J.; Edwards, S. Simulation of Neptunium Extraction in an Advanced PUREX Process Model Improvement. Solvent. Extr. Ion Exch. 2017, 35(1), 1–18. DOI: 10.1080/07366299.2016.1273684.
  • Chen, H. Y.; Taylor, R.; Jobson, M.; Woodhead, D.; Masters, A. Development and Validation of a Flowsheet Simulation Model for Neptunium Extraction in an Advanced PUREX Process. Solvent. Extr. Ion Exch. 2016, 34(4), 297–321. DOI: 10.1080/07366299.2016.1185853.
  • Matsuda, T.; Gonda, K. Mass Transfer Coefficients of Uranium and Plutonium Across Aqueous/Organic Interfaces of Solvent Extraction. J. Nucl. Sci. Technol. 1986, 23(6), 529–539. DOI: 10.1080/18811248.1986.9735016.
  • Woods, M.; Montag, T. A.; Sullivan, J. C. A Kinetic Study of the Oxidation of Nitrous Acid by Np(vi) and Am(vi) in Perchlorate Media. J. Radioanal. Nucl. Chem. 1976, 38(11), 2059–2061. DOI: 10.1016/0022-1902(76)80468-X.
  • Sarsfield, M. J.; Taylor, R. J.; Maher, C. J. Neptunium(v) Disproportionation and Cation-Cation Interactions in TBP/Kerosene Solvent. Radiochim. Acta. 2007, 95(12), 677–682. DOI: 10.1524/ract.2007.95.12.677.
  • Wehrey, F.; Guillaume, B. Kinetics of the Neptunium(iv)-Neptunium(vi) Reaction and of the Oxidation of Neptunium(v) by Nitric Acid in Tributylphosphate-N Dodecane Solutions. Radiochim. Acta. 1989, 46(2), 95–100. 46.2.95. DOI: 10.1524/ract.1989.46.2.95.
  • Loveland, W.; Morrissey, D. J.; Seaborg, G. T. Modern Nuclear Chemistry[m]; John Wiley & Sons Press, 2017; pp. 57–92. DOI: 10.1002/9781119348450.
  • Precek, M. The Kinetic and Radiolytic Aspects of Control of the Redox Speciation of Neptunium in Solutions of Nitric Acid. Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 2012.
  • Taylor, G. I. Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube. Proc. R. Soc. Lond. A. 1953, 219, 186–203. DOI: 10.1098/rspa.1953.0139.
  • Petrich, G.; Kolarik, Z. The 1981 Purex Distribution Data Index; Institut für Heiße Chemie: Karlsruhe, Germany, 1981.
  • Kumari, N.; Pathak, P. N.; Prabhu, D. R.; Manchanda, V. K. Comparison of Extraction Behavior of Neptunium from Nitric Acid Medium Employing Tri-N-Butyl Phosphate and N,N-Dihexyl Octanamide as Extractants. Sep. Sci. Technol. 2012, 47(10), 1492–1497. DOI: 10.1080/01496395.2011.653034.
  • Verma, P. K.; Mohapatra, P. K. Fate of Neptunium in Nuclear Fuel Cycle Streams: State-Of-The Art on Separation Strategies. Radiochim. Acta. 2022, 110(6–9), 527–548. DOI: 10.1515/ract-2022-0008.
  • Geldard, J. F.; Beyerlein, A. L. CUSEP—A New Mathematical Model of Pulsed Column Contactors Using the Purex Process. Nucl. Technol. 2017, 85(2), 172–186. DOI: 10.13182/NT89-A34239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.