1,350
Views
72
CrossRef citations to date
0
Altmetric
Original Article

The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum

&

REFERENCES

  • Akpan, J.P., & Andre, T. (2000). Using a computer simulation before dissection to help students learn anatomy. Journal of Computers in Mathematics and Science Teaching, 19, 297–313.
  • Alessi, S.M. (1988). Fidelity in the design of instructional simulations. Journal of Computer-Based Instruction, 15, 40–47.
  • Alfieri, L., Brooks, P.J., Aldrich, N.J., & Tenenbaum, H.R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103, 1–18. doi:10.1037/a0021017
  • Balamuralithara, B., & Woods, P.C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17, 108–118. doi:10.1002/cae.20186
  • Bell, R.L., & Trundle, K.C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45, 346–372. doi:10.1002/tea.20227
  • Bivall, P., Ainsworth, S., & Tibell, L.A. E. (2011). Do haptic representations help complex molecular learning? Science Education, 95, 700–719. doi:10.1002/sce.20439
  • Burton, H., & Sinclair, R.J. (2000). Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. Journal of Clinical Neurophysiology, 17, 575–591.
  • Campbell, J.O., Bourne, J.R., Mosterman, P.J., & Brodersen, A.J. (2002). The effectiveness of learning simulations for electronic laboratories. Journal of Engineering Education, 91, 81–87. doi:10.1002/j.2168-9830.2002.tb00675.x
  • Carlsen, D., & Andre, T. (1992). Use of a microcomputer simulation and conceptual change text to overcome student preconceptions about electric circuits. Journal of Computer-Based Instruction, 19, 105–109.
  • Carlson, R.A., Avraamides, M.N., Cary, M., & Strasberg, S. (2007). What do the hands externalize in simple arithmetic? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 747–756. doi:10.1037/0278-7393.33.4.747
  • Chang, K.E., Chen, Y.L., Lin, H.Y., & Sung, Y.T. (2008). Effects of learning support in simulation-based physics learning. Computers & Education, 51, 1486–1498. doi:10.1016/j.compedu.2008.01.007
  • Chen, S. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers & Education, 55, 1123–1130. doi:10.1016/j.compedu.2010.05.009
  • Chini, J.J., Madsen, A., Gire, E., Rebello, N.S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics: Physics Education Research, 8, 010113. doi:10.1103/PhysRevSTPER.8.010113
  • Clements, D.H. (1999). “Concrete” manipulatives, concrete ideas. Contemporary Issues in Early Childhood Research Quarterly, 1, 45–60.
  • Climent-Bellido, M.S., Martínez-Jiménez, P., Pones-Pedrajas, A., & Polo, J. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80, 346–352.
  • de Jong, T. (2006a). Computer simulations: Technological advances in inquiry learning. Science, 312, 532–533. doi:10.1126/science.1127750
  • de Jong, T. (2006b). Scaffolds for scientific discovery learning. In J. Elen & R.E. Clark (Eds.), Dealing with complexity in learning environments (pp. 107–128). London, UK: Elsevier Science Publishers.
  • de Jong, T., & Lazonder, A.W. (2014). The guided discovery principle in multimedia learning. In R.E. Mayer, J.J. G. van Merriënboer, W. Schnotz, & J. Elen (Eds.), The Cambridge handbook of multimedia learning . (2nd ed.). Cambridge, UK: Cambridge University Press.
  • de Jong, T., Linn, M.C., & Zacharia, Z.C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308. doi:10.1126/science.1230579
  • de Jong, T., & van Joolingen, W.R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–202. doi:10.3102/00346543068002179
  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children's ideas and the learning of science. Milton Keynes, UK: Open University Press.
  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children's ideas. London, UK: Routledge Press.
  • Enyedy, N., Danish, J., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7, 347–378. doi:10.1007/s11412-012-9150-3
  • Finkelstein, N.D., Adams, W.K., Keller, C.J., Kohl, P.B., Kohl, K.K., Podolefsky, N.S., & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting simulations for laboratory equipment. Physical Review Special Topics: Physics Education Research, 1, 1–8. doi:10.1103/PhysRevSTPER.1.010103
  • Ford, D.N., & McCormack, D.E. M. (2000). Effects of time scale focus on system understanding in decision support systems. Simulation & Gaming, 31, 309–330. doi:10.1177/104687810003100301
  • Furtak, E.M., Seidel, T., Iverson, H., & Briggs, D.C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching. Review of Educational Research, 82, 300–329. doi:10.3102/0034654312457206
  • Gire, E., Carmichael, A., Chini, J.J., Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students’ conceptual learning about pulleys. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: Proceedings of the 9th International Conference of the Learning Sciences (ICLS 2010) (Vol. 1, pp. 937–944). Chicago, IL: International Society of the Learning Sciences.
  • Hochberg, Y., & Tamhane, A.C. (1987). Multiple comparison procedures. New York, NY: Wiley.
  • Huppert, J., Lomask, S.M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24, 803–821. doi:10.1080/09500690110049150
  • Ibáñez, M.B., Di Serio, Á., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1–13. doi:http://dx.doi.org/10.1016/j.compedu.2013.09.004
  • Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271–283. doi:10.1111/j.1365-2729.2007.00259.x
  • Jaakkola, T., Nurmi, S., & Lehtinen, E. (2010). Conceptual change in learning electricity: Using virtual and concrete external representations simultaneously. In L. Verschaffel, E. de Corte, T. de Jong, & J. Elen (Eds.), Use of external representations in reasoning and problem solving (pp. 133–153). New York, NY: Routledge.
  • Jaakkola, T., Nurmi, S., & Veermans, K.H. (2009, August). Comparing the effectiveness of semi-concrete and concreteness fading computer-simulations to support inquiry learning. Paper presented at the EARLI conference, Amsterdam, The Netherlands.
  • Jaakkola, T., Nurmi, S., & Veermans, K.H. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48, 71–93. doi:10.1002/tea.20386
  • Jara, C.A., Candelas, F.A., Puente, S.T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57, 2451–2246. doi:10.1016/j.compedu.2011.07.003
  • Jones, M.G., Andre, T., Superfine, R., & Taylor, R. (2003). Learning at the nanoscale: The impact of students’ use of remote microscopy on concepts of viruses, scale, and microscopy. Journal of Research in Science Teaching, 40, 303–322. doi:10.1002/tea.10078
  • Jones, M.G., Minogue, J., Tretter, T.R., Negishi, A., & Taylor, R. (2006). Haptic augmentation of science instruction: Does touch matter? Science Education, 90, 111–123. doi:10.1002/sce.20086
  • Klahr, D., Triona, L.M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Science Teaching, 44, 183–203. doi:10.1002/tea.20152
  • Kollöffel, B., & de Jong, T. (2013). Conceptual understanding of electrical circuits in secondary vocational engineering education: Combining traditional instruction with inquiry learning in a virtual lab. Journal of Engineering Education, 102, 375–393. doi:10.1002/jee.20022
  • Koretsky, M., Kelly, C., & Gummer, E. (2011). Student perceptions of learning in the laboratory: Comparison of industrially situated virtual laboratories to capstone physical laboratories. Journal of Engineering Education, 100, 540–573. doi:10.1002/j.2168-9830.2011.tb00026.x
  • Marshall, J.A., & Young, E.S. (2006). Preservice teachers’ theory development in physical and simulated environments. Journal of Research in Science Teaching, 43, 907–937. doi:10.1002/tea.20124
  • Martinez, G., Naranjo, F.L., Perez, A.L., Suero, M.I., & Pardo, P.J. (2011). Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory. Physical Review Special Topics-Physics Education Research, 7. doi:10.1103/PhysRevSTPER.7.020111
  • McDermott, L.C., & Shaffer, P.S. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. American Journal of Physics, 60, 994–1003. doi:10.1119/1.17003
  • McDermott, L.C., & The Physics Education Group. (1996). Physics by inquiry. New York, NY: Wiley.
  • Millar, S. (1999). Memory in touch. Psicothema, 11, 747–767.
  • National Research Council. (2006). America's lab report: Investigations in high school science. Washington, DC: National Academy Press.
  • National Science Teachers Association. (2007). The integral role of laboratory investigations in science instruction. Retrieved from http://www.nsta.org/about/positions/laboratory.aspx
  • Olympiou, G., Zacharia, Z.C., & de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–596. doi:10.1007/s11251-012-9245-2
  • Origgi, G. (2004). Is trust an epistemological notion? Episteme, 1, 1–12.
  • Powell, A.B., Francisco, J.M., & Maher, C.A. (2003). An analytical model for studying the development of learners’ mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 22, 405–435. doi:10.1016/j.jmathb.2003.09.002
  • Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21, 133–147. doi:10.1007/s10956-011-9291-6
  • Quintana, C., Reiser, B.J., Davis, E.A., Krajcik, J., Fretz, E., Duncan, R.G., … Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13, 337–387. doi:10.1207/s15327809jls1303_4
  • Renken, M.D., & Nunez, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10–23. doi:10.1016/j.learninstruc.2012.08.006
  • Riverdeep Interactive Learning (2009). Virtual Laboratories Electricity. . Retrieved from http://web.riverdeep.net/portal/page?_pageid=818,1382928,818_1382947&_dad=portal&_schema=PORTAL
  • Schoenfeld, A.H. (1989). Teaching mathematical thinking and problem solving. In L.B. Resnick & B.L. Klopfer (Eds.), Towards the thinking curriculum: Current cognitive research (pp. 83–103). Washington, DC: ASCD.
  • Shaffer, P.S., & McDermott, L.C. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part II: Design of an instructional strategy. American Journal of Physics, 60, 1003–1013. doi:10.1119/1.16979
  • Siler, S., Mowery, D., Magaro, C., Willows, K., & Klahr, D. (2010). Comparison of a computer-based to hands-on lesson in experimental design. In V. Aleven, J. Kay, & J. Mostow (Eds.), Intelligent tutoring systems, part II (Vol. 6095, pp. 408–410). Berlin, Germany: Springer-Verlag Berlin.
  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research. Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage Publications.
  • Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students’ achievement. Journal of Educational Technology & Society, 16, 159–170.
  • Toth, E.E., Ludvico, L.R., & Morrow, B.L. (2012). Blended inquiry with hands-on and virtual laboratories: The role of perceptual features during knowledge construction. Interactive Learning Environments, 20, 1–17. doi:10.1080/10494820.2012.693102
  • Toth, E.E., Morrow, B., & Ludvico, L. (2009). Designing blended inquiry learning in a laboratory context: A study of incorporating hands-on and virtual laboratories. Innovative Higher Education, 33, 333–344. doi:10.1007/s10755-008-9087-7
  • Toth, E.E., Suthers, D.D., & Lesgold, A.M. (2002). “Mapping to know”: The effects of representational guidance and reflective assessment on scientific inquiry. Science Education, 86, 264–286. doi:10.1002/Sce.10004
  • Triona, L.M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21, 149–173. doi:10.1207/S1532690XCI2102_02
  • van Joolingen, W.R., de Jong, T., Lazonder, A.W., Savelsbergh, E.R., & Manlove, S. (2005). Co-lab: Research and development of an on-line learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671–688. doi:10.1016/j.chb.2004.10.039
  • Waldrop, M.M. (2013). The virtual lab. Nature, 499, 268–270. doi:10.1038/499268a
  • Wiesner, T.F., & Lan, W. (2004). Comparison of student learning in physical and simulated unit operations experiments. Journal of Engineering Education, 93, 195–204. doi:10.1002/j.2168-9830.2004.tb00806.x
  • Wilson, P. (1983). Second-hand knowledge: An inquiry into cognitive authority. Westport, CT: Greenwood Press.
  • Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y.L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43, 25–42. doi:10.1002/tea.20097
  • Yuan, Y., Lee, C.Y., & Wang, C.H. (2010). A comparison study of polyominoes explorations in a physical and virtual manipulative environment. Journal of Computer Assisted Learning, 26, 307–316. doi:10.1111/j.1365-2729.2010.00352.x
  • Yueh, H.P., & Sheen, H.J. (2009). Developing experiential learning with a cohort-blended laboratory training in nano-bio engineering education. International Journal of Engineering Education, 25, 712–722.
  • Zacharia, Z.C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120–132. doi:10.1111/j.1365-2729.2006.00215.x
  • Zacharia, Z.C., & Constantinou, C.P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the physics by inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76, 425–430. doi:10.1119/1.2885059
  • Zacharia, Z.C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students? Early Childhood Research Quarterly, 27, 447–457. doi:10.1016/j.ecresq.2012.02.004
  • Zacharia, Z.C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21, 317–331. doi:10.1016/j.learninstruc.2010.03.001
  • Zacharia, Z.C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45, 1021–1035. doi:10.1002/tea.20260

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.