1,496
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Learning to “See” Less Than Nothing: Putting Perceptual Skills to Work for Learning Numerical Structure

, , &

REFERENCES

  • Ball, D.L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator: The Professional Journal of the American Federation of Teachers, 16(2) , 14–18, 46–47.
  • Battista, M.T. (1983). A complete model for operations on integers. Arithmetic Teacher, 30(9), 26–31. Retrieved from http://www.jstor.org/stable/41190724
  • Bell, M., Bretzlauf, J., Dillard, A., Hartfield, R., Isaacs, A., McBride, J., & Saecker, P. (2004). Everyday mathematics grade 4: Teachers lesson guide volume 1 (2nd ed.). Chicago, IL: SRA/McGraw-Hill.
  • Blair, K.P., Rosenberg-Lee, M., Tsang,J., Schwartz, D.L., & Menon, V. (2012). Beyond natural numbers: Representation of negative numbers in the intraparietal sulcus. Frontiers in Human Neuroscience, 6(7), doi: 1–14. doi: 10.3389/fnhum.2012.00007
  • Bofferding, L. (2014). Negative integer understanding: Characterizing first graders’ mental models. Journal for Research in Mathematics Education, 45(2), 194–245. doi: 10.5951/jresematheduc.45.2.0194
  • Bofferding, L.C. (2011). Expanding the numerical central conceptual structure: First graders’ understanding of integers. Doctoral dissertation, Stanford University, Stanford, CA.
  • Bolyard, J., & Moyer-Packenham, P. (2012). Making sense of integer arithmetic: The effect of using virtual manipulatives on students’ representational fluency. Journal of Computers in Mathematics and Science Teaching, 31(2), 93–113.
  • Booth, J.L., & Siegler, R.S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031. doi: 10.1111/j.1467-8624.2008.01173.x
  • Bornstein, M.H., Ferdinandsen, K., & Gross, C.G. (1981). Perception of symmetry in infancy. Developmental Psychology, 17(1), 82–86. doi: 10.1037/0012-1649.17.1.82
  • Butterworth, B. (2006). Mathematical expertise. In K. Anders Ericsson, N. Charness, P.J. Feltovich, & R.R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 553–568). New York, NY: Cambridge University Press.
  • Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children's thought. Monographs of the Society for Research in Child Development, 61(1–2), 1–265. doi: 10.2307/1166077
  • Cepeda, N.J., Pashler, H., Vul, E., Wixted, J.T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132(3), 354–380. doi: 10.1037/0033-2909.132.3.354
  • Chi, M.T., De Leeuw, N., Chiu, M.H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439–477. doi: 10.1207/s15516709cog1803_3
  • Clements, D.H., & McMillen, S. (1996). Rethinking “concrete” manipulatives. Teaching Children Mathematics, 2(5), 270–279. Retrieved from http://www.jstor.org/stable/41196500
  • Cohen Kadosh, R., & Henik, A. (2006). A common representation for semantic and physical properties. Experimental Psychology, 53(2), 87–94. doi: 10.1027/1618-3169.53.2.87
  • Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., & Linden, D.E. (2005). Are numbers special? The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43(9), 1238–1248. doi: 10.1016/j.neuropsychologia.2004.12.017
  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398. doi: 10.1016/j.neuron.2007.10.004
  • DiSessa, A.A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi: 10.1080/07370008.1985.9649008
  • Dodd, M.D. (2011). Negative numbers eliminate, but do not reverse, the attentional SNARC effect. Psychological Research, 75(1), 2–9. doi: 10.1007/s00426-010-0283-6
  • Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G.A. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56. doi: 10.1162/089892903321107819
  • Fischer, M.H. (2003). Cognitive representation of negative numbers. Psychological Science, 14(3), 278–282. doi: 10.1111/1467-9280.03435
  • Fisher, C.B., Ferdinandsen, K., & Bornstein, M.H. (1981). The role of symmetry in infant form discrimination. Child Development, 52(2), 457–462. doi: 10.2307/1129162
  • Gibson, E.J. (1982). The concept of affordances in development: The renascence of functionalism. In W.A. Collins (Ed.), The concept of development: The Minnesota Symposia on Child Psychology (Vol. 33). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Gibson, E.J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39(1), 1–42. doi: 10.1146/annurev.ps.39.020188.000245
  • Gibson, J.J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin. Reprinted 1986, Erlbaum.
  • Gibson, J.J., & Gibson, E.J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 32. doi: 10.1037/h0048826
  • Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76(2), 104–122. doi: 10.1006/jecp.2000.2564
  • Gregg, J., & Gregg, D.U. (2007). A context for integer computation. Mathematics Teaching in the Middle School, 13(1), 46–50.
  • Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at-risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 24–49). Cambridge, MA: Bradford Books MIT Press.
  • Gullick, M.M., Wolford, G., & Temple, E. (2012). Understanding less than nothing: Neural distance effects for negative numbers. Neuroimage, 62(1), 542–554. doi: 10.1016/j.neuroimage.2012.04.058
  • Holloway, I.D., Price, G.R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49(1), 1006–1017. doi: 10.1016/j.neuroimage.2009.07.071
  • Hubbard, E.M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. doi: 10.1038/nrn1684
  • Johnson-Laird, P.N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (Cognitive Science Series No. 6). New York, NY: Harvard University Press.
  • Kraft, T.L., & Pressman, S.D. (2012). Grin and bear it: The influence of manipulated facial expression on the stress response. Psychological Science, 23(11), 1372–1378. doi: 10.1177/0956797612445312
  • Lakoff, G., & Núñez.R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  • Liebeck, P. (1990). Scores and forfeits—An intuitive model for integer arithmetic. Educational Studies in Mathematics, 21(3), 221–239. doi: 10.1007/BF00305091
  • Linchevski, L., & Williams, J. (1999). Using intuition from everyday life in ‘filling’ the gap in children's extension of their number concept to include the negative numbers. Educational Studies in Mathematics, 39(1–3), 131–147. doi: 10.1023/A:1003726317920
  • Lipton, J.S., & Spelke, E.S. (2005). Preschool children's mapping of number words to nonsymbolic numerosities. Child Development, 76(5), 978–988. doi: 10.1111/j.1467-8624.2005.00891.x
  • Lobato, J., Ellis, A.B., & Munoz, R. (2003). How “focusing phenomena” in the instructional environment support individual students’ generalizations. Mathematical Thinking and Learning, 5(1), 1–36. doi: 10.1207/S15327833MTL0501_01
  • MacLeod, C.M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163. doi: 10.1037/0033-2909.109.2.163
  • Martin, T., & Schwartz, D.L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of the fraction concept. Cognitive Science, 29(4), 587–625. doi: 10.1207/s15516709cog0000_15
  • Martin, T., Lukong, A., & Reaves, R. (2007). The role of manipulatives in arithmetic and geometry tasks. Journal of Education and Human Development, 1(1), 1–14.
  • McNeil, N., & Fyfe, E.R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22(6), 440–448. doi: 10.1016/j.learninstruc.2012.05.001
  • McNeil, N., & Jarvin, L. (2007). When theories don't add up: Disentangling the manipulatives debate. Theory Into Practice, 46(4), 309–316. doi: 10.1080/00405840701593899
  • Moyer, R.S., & Landauer, T.K. (1967). The time required for judgments of numerical inequality. Nature, 215, 1519–1520. doi: 10.1038/2151519a0
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for mathematics. Washington, DC: Authors.
  • Ni, Y., & Zhou, Y.D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52. doi: 10.1207/s15326985ep4001_3
  • Nuerk, H.C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology: Section A, 57(5), 835–863. doi: 10.1080/02724980343000512
  • Pea, R.D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13(3), 423–451. doi: 10.1207/s15327809jls1303_6
  • Peled, I., Mukhopadhyay, S., & Resnick, L.B. (1989). Formal and informal sources of mental models for negative numbers. In G. Vergnaud, J. Rogalski, & M. Artique (Eds.), Proceedings of the 13th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 33, pp. 106–110). Paris, France : International Group for the Psychology of Mathematics Education.
  • Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305. doi: 10.1016/j.neuron.2006.11.022
  • Pinel, P., Dehaene, S., Riviere, D., & Le Bihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026. doi: 10.1006/nimg.2001.0913
  • Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993. doi: 10.1016/S0896-6273(04)00107-2
  • Prather, R.W., & Alibali, M.W. (2008). Understand and using principles of arithmetic: Operations involving negative numbers. Cognitive Science, 32, 445–457. doi: 10.1080/03640210701864147
  • Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92. doi: 10.1006/jecp.2001.2645
  • Sarama, J., & Clements, D.H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150. doi: 10.1111/j.1750-8606.2009.00095.x
  • Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences, 102(8), 3159–3163. doi: 10.1073/pnas.0500319102
  • Saxe, G.B., Earnest, D., Sitabkhan, Y., Haldar, L.C., Lewis, K.E., & Zheng, Y. (2010). Supporting generative thinking about the integer number line in elementary mathematics. Cognition and Instruction, 28(4), 433–474. doi: 10.1080/07370008.2010.511569
  • Schwartz, D.L., Blair, K.P., & Tsang, J.M. (2012). How to build an educational neuroscience: Two approaches with concrete instances. British Journal of Educational Psychology Monograph Series II: Part 8—Educational Neuroscience, 1(1), 9–27.
  • Shaki, S., & Petrusic, W.M. (2005). On the mental representation of negative numbers: Context-dependent SNARC effects with comparative judgments. Psychonomic Bulletin & Review, 12(5), 931–937. doi: 10.3758/BF03196788
  • Sherin, B.L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. doi: 10.1207/S1532690XCI1904_3
  • Siegler, R.S., & Booth, J.L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. doi: 10.1111/j.1467-8624.2004.00684.x
  • Siegler, R.S., & Opfer, J.E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250. doi: 10.1111/1467-9280.02438
  • Siegler, R.S., & Ramani, G.B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101(3), 545. doi: 10.1037/a0014239
  • Stephan, M., & Akyuz, D. (2012). A proposed instructional theory for integer addition and subtraction. Journal for Research in Mathematics Education, 43(4), 428–464. doi: 10.5951/jresematheduc.43.4.0428
  • Strack, F., Martin, L.L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54(5), 768–777. doi: 10.1037/0022-3514.54.5.768
  • Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi: 10.1037/h0054651
  • Swanson, P.E. (2010). The intersection of language and mathematics. Mathematics Teaching in the Middle School, 15(9), 516–523.
  • Tsang, J.M., Rosenberg-Lee, M., Blair, K.P., Schwartz, D.L., & Menon, V. (2010). Near symmetry in a number bisection task yields faster responses and greater occipital activity. Poster presented at the 16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona, Spain.
  • Tsang, J.M., & Schwartz, D.L. (2009). Symmetry in the semantic representation of integers. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 323–328). Austin, TX: Cognitive Science Society.
  • Tyler, C.W., Baseler, H.A., Kontsevich, L.L., Likova, L.T., Wade, A.R., & Wandell, B.A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. NeuroImage, 24(2), 306–314. doi: 10.1016/j.neuroimage.2004.09.018
  • Tzelgov, J., Ganor-Stern, D., & Maymon-Schreiber, K. (2009). The representation of negative numbers: Exploring the effects of mode of processing and notation. Quarterly Journal of Experimental Psychology, 62(3), 605–624. doi: 10.1080/17470210802034751
  • Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 166. doi: 10.1037/0278-7393.18.1.166
  • Uttal, D.H., Scudder, K.V., & DeLoache, J.S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 37–54. doi: 10.1016/S0193-3973(97)90013-7
  • Varma, S., & Schwartz, D.L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121(3), 363–385. doi: 10.1016/j.cognition.2011.08.005
  • Wood, G., Ischebeck, A., Koppelstaetter, F., Gotwald, T., & Kaufmann, L. (2009). Developmental trajectories of magnitude processing and interference control: An fMRI study. Cerebral Cortex, 19(11), 2755–2765. doi: 10.1093/cercor/bhp056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.