1,459
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Conceptual and Procedural Knowledge During Strategy Construction: A Complex Knowledge Systems Perspective

ORCID Icon

References

  • Amin, T., & Levrini, O. (2018). Converging perspectives on conceptual change: Mapping an emerging paradigm in the learning sciences. New York, NY: Routledge.
  • Amsterlaw, J., & Wellman, H. M. (2006). Theories of mind in transition: A microgenetic study of the development of false belief understanding. Journal of cognition and development, 7(2), 139–172. doi:10.1207/s15327647jcd0702_1
  • Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for research in mathematics education, 38(2), 115–131.
  • Beishuizen, M., Van Putten, C. M., & Van Mulken, F. (1997). Mental arithmetic and strategy use with indirect number problems up to one hundred. Learning and Instruction, 7(1), 87–106. doi:10.1016/S0959-4752(96)00012-6
  • Brownell, W. A., & Chazal, C. B. (1935). The effects of premature drill in third-grade arithmetic. Journal of Educational Research, 29(1), 17–28. doi:10.1080/00220671.1935.10880546
  • Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental psychology, 27(5), 777. doi:10.1037/0012-1649.27.5.777
  • Carpenter, T. P., Franke, M. L., Jacobs, V. R., Fennema, E., & Empson, S. B. (1998). A longitudinal study of invention and understanding in children's multidigit addition and subtraction. Journal for research in mathematics education, 29(1), 3–20. doi:10.2307/749715
  • Carroll, W. M., & Porter, D. (1997). Invented strategies can develop meaningful mathematical procedures. Teaching Children Mathematics, 3(7), 370–375.
  • Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5(2), 121–152. doi:10.1207/s15516709cog0502_2
  • Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for social exchange. In J. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture. New York: Oxford University Press.
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi:10.1080/07370008.1985.9649008
  • diSessa, A. A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive science, 38(5), 795–850. doi:10.1111/cogs.12131
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International journal of science education, 20(10), 1155–1191. doi:10.1080/0950069980201002
  • diSessa, A. A., Sherin, B., & Levin, M. (2016). Knowledge analysis: An introduction. In A. A. diSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 30–61). NY: Routledge.
  • diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 121–154). Greenwich, CT: Information Age Publishing.
  • Fazio, L. K., & Siegler, R. S. (2013). Microgenetic learning analysis: A distinction without a difference. Human Development, 56(1), 52–58. doi:10.1159/000345542
  • Gagné, R. M. (1977). The conditions of learning (3rd ed.). New York: Holt, Rinehart & Winston.
  • Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. In William Doman (Ed.), In the Handbook of child psychology: Volume 2: Cognition, perception, and language (pp. 575–630). Hoboken, NJ: John Wiley & Sons.
  • Goldin-Meadow, S., Alibali, M. W., & Church, R. B. (1993). Transitions in concept acquisition: Using the hand to read the mind. Psychological review, 100(2), 279. doi:10.1037/0033-295X.100.2.279
  • Greeno, J. G. (1978). Understanding and procedural knowledge in mathematics instruction. Educational Psychologist, 12(3), 262–283. doi:10.1080/00461527809529180
  • Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for research in mathematics education, 22(3), 170–218. doi:10.2307/749074
  • Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. New York: Routledge.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis (pp. 1–27). Hillsdale, NJ: Erlbaum.
  • Hiebert, J., Stigler, J. W., & Manaster, A. B. (1999). Mathematical features of lessons in the TIMSS Video Study. ZDM, 31(6), 196–201.
  • Izsak, A. (2000). Inscribing the winch: Mechanisms by which students develop knowledge structures for representing the physical world with algebra. The Journal of the Learning Sciences, 9(1), 31–74. doi:10.1207/s15327809jls0901_4
  • Kamii, C. (with Joseph, L. L.) (1989). Young children continue to reinvent arithmetic-2nd grade: Implications of Piaget's theory. New York: Teachers Coll.
  • Kapon, S., & diSessa, A. A. (2012). Reasoning through instructional analogies. Cognition and Instruction, 30(3), 261–310. doi:10.1080/07370008.2012.689385
  • Karmiloff-Smith, A. (1992). Learning, development, and conceptual change. Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.
  • Karmiloff-Smith, A. (2013). ‘Microgenetics’: No Single Method Can Elucidate Human Learning. Human Development, 56(1), 47–51. doi:10.1159/000345541
  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic books.
  • Lappan, G., Fey, J., Friel, S., & Phillips, E. (2014). Connected mathematics program. Upper Saddle River, NJ: Pearson Education.
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. New York, NY: Cambridge University Press.
  • Levin (Campbell), M. E. (2011). Modeling the co-development of strategic and conceptual knowledge during mathematical problem solving (Doctoral dissertation). University of California, Berkeley.
  • Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational research and practice. Educational Psychologist, 47(3), 232–247. doi:10.1080/00461520.2012.693353
  • National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). Common Core State Standards – Mathematics. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2007). Curriculum focal points for prekindergarten through grade 8 mathematics: A quest for coherence. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Reston, VA: Author.
  • National Research Council. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers (Vol. 17). Dordrecht, The Netherlands: Springer Science & Business Media.
  • Ohlssohn, S. (2007). The effects of order: A constraint-based explanation. In F. Ritter, J. Nerb, E. Lehtinen, & T. O'Shea (Eds.), In order to learn: How sequences of topics influence learning (pp. 151–165). New York: Oxford University Press.
  • Opfer, J. E., & Siegler, R. S. (2004). Revisiting preschoolers' living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive psychology, 49(4), 301–332. doi:10.1016/j.cogpsych.2004.01.002
  • Parnafes, O. (2007). What does “fast” mean? Understanding the physical world through computational representations. The Journal of the Learning Sciences, 16(3), 415–450. doi:10.1080/10508400701413443
  • Parnafes, O., & diSessa, A. A. (2013). Microgenetic learning analysis: A methodology for studying knowledge in transition. Human Development, 56(1), 5–37. doi:10.1159/000342945
  • Pratt, D., & Noss, R. (2002). The microevolution of mathematical knowledge: The case of randomness. The journal of the learning sciences, 11(4), 453–488. doi:10.1207/S15327809JLS1104_2
  • Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169. doi:10.1037/0003-066X.44.2.162
  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of educational psychology, 91(1), 175–189.
  • Rittle-Johnson, B., & Schneider, M. (2014). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102–1118). Oxford: Oxford University Press.
  • Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587–597. doi:10.1007/s10648-015-9302-x
  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. doi:10.1037/0022-0663.93.2.346
  • Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101(3), 529. doi:10.1037/a0014224
  • Sallee, T., Kysh, J., Kasimatis, E., & Hoey, B. (2002). College preparatory mathematics (Algebra 1). Sacramento, CA: CPM Educational Program.
  • Saxe, G. B. (1988). Candy selling and math learning. Educational researcher, 17(6), 14–21. doi:10.3102/0013189X017006014
  • Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental psychology, 47(6), 1525. doi:10.1037/a0024997
  • Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental psychology, 46(1), 178. doi:10.1037/a0016701
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of' “well-taught” mathematics courses. Educational psychologist, 23(2), 145–166. doi:10.1207/s15326985ep2302_5
  • Schoenfeld, A. H. (2004). The math wars. Educational policy, 18(1), 253–286. doi:10.1177/0895904803260042
  • Schoenfeld, A. H., Smith, J. P. I. I. I., & Arcavi, A. (1993). Learning: The microgenetic analysis of one student's evolving understanding of a complex subject matter domain. Advances in instructional psychology, 4, 55–175.
  • Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 565–613. doi:10.1080/10508400701525253
  • Sherin, B. L. (1996). The symbolic basis of physical intuition A study of two symbol systems in physics instruction (Doctoral dissertation). University of California, Berkeley.
  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. doi:10.1207/S1532690XCI1904_3
  • Sherin, B. L. (2018). Elements, ensembles, and dynamic constructions. In T. Amin & O. Levrini (Eds.), Converging perspectives on conceptual change: Mapping an emerging paradigm in the learning sciences (pp. 61–78). New York, NY: Routledge.
  • Siegler, R. S. (2006). Microgenetic analyses of learning. In W. Damon, & R. M. Lerner, ( Series Eds.) & D. Kuhn, & R. S. Siegler ( Vol. Eds.), Handbook of child psychology: Volume 2: Cognition, perception, and language (6th ed., pp. 464–510). Hoboken, NJ: Wiley.
  • Seigler, R. S. (1998). Emerging minds: The process of change in children's thinking. New York, NJ: Oxford University Press.
  • Siegler, R., & Jenkins, E. (1989). Strategy discovery and strategy generalization. In How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377. doi:10.1037/0096-3445.127.4.377
  • Simon, M., Saldanha, L., McClintock, E., Akar, G. K., Watanabe, T., & Zembat, I. O. (2010). A developing approach to studying students' learning through their mathematical activity. Cognition and Instruction, 28(1), 70–112. doi:10.1080/07370000903430566
  • Skemp, R. R. (1976/2006). Relational understanding and instrumental understanding. Mathematics Teaching in the Middle School, 12(2), 88–95.
  • Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for research in mathematics education, 36(5), 404–411.
  • Star, J. R. (2007). Foregrounding procedural knowledge. Journal for Research in Mathematics Education, 38(2), 132–135.
  • Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6), 565–579. doi:10.1016/j.learninstruc.2007.09.018
  • Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31(3), 280–300.
  • TERC. (2016). Investigations in number, data, and space (2nd ed.). Glenview, IL: Pearson Scott Foresman.
  • VanLehn, K., & Brown, J. S. (1980). Planning nets: A representation for formalizing analogies and semantic models of procedural skills. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.), Aptitude, learning, and instruction (Vol. 2, pp. 95–137). Hillsdale, NJ: Lawrence Erlbaum.
  • VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press.
  • Vergnaud, G. (2009). The theory of conceptual fields. Human development, 52(2), 83–94.
  • Wagner, J. F. (2006). Transfer in pieces. Cognition and instruction, 24(1), 1–71.
  • Wason, P. C. (1968). Reasoning about a rule. The Quarterly journal of experimental psychology, 20(3), 273–281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.