1,218
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Beyond Empirical Adequacy: Learning Progressions as Models and Their Value for Teachers

&

References

  • Alonzo, A. C. (2011). Learning progressions that support formative assessment practices. Measurement: Interdisciplinary Research and Perspectives, 9, 124–129. doi:10.1080/15366367.2011.599629
  • Alonzo, A. C. (2012). Eliciting student responses relative to a learning progression: Assessment challenges. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 241–254). Rotterdam, The Netherlands: Sense Publishers.
  • Alonzo, A. C. (2018). An argument for formative assessment with science learning progressions. Applied Measurement in Education, 31(2), 104–112. doi:10.1080/08957347.2017.1408630
  • Alonzo, A. C., & Christensen, J. A. (2017). Using learning progressions in instruction on energy and momentum [Unpublished curriculum materials]. East Lansing, MI: Michigan State University.
  • Alonzo, A. C., Christensen, J. A., Hancock, J. B., & Gotwals, A. W. (2017). Learning progressions to support TE 407 microteaching [Unpublished curriculum materials]. East Lansing, MI: Michigan State University.
  • Alonzo, A. C., de los Santos, X. E., & Kobrin, J. L. (2014, April). Teachers’ interpretations of score reports based upon ordered-multiple choice items linked to a learning progression. In J. Masters (Chair), Diagnostic assessment: Recent advances from psychometric modeling to classroom applications. Symposium conducted at the annual meeting of the American Educational Research Association, Philadelphia, PA.
  • Alonzo, A., & Elby, A. (2014). The nature of student thinking and its implications for the use of learning progressions to inform classroom instruction. In J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, S. Jurow, K. O’Conner, T. Lee, & L. D’Amico. (Eds.). Learning and becoming in practice: The International Conference of the Learning Sciences (ICLS) 2014 (Vol. 2, pp. 1037–1041). Boulder, CO: International Society of the Learning Sciences.
  • Alonzo, A. C., & Elby, A. (2015, April). Physics teachers’ use of learning-progression-based assessment information to reason about student ideas and instructional responses. Paper presented at the NARST annual international conference, Chicago, IL. doi:10.13140/RG.2.1.3334.1922
  • Alonzo, A. C., Neidorf, T., & Anderson, C. W. (2012). Using learning progressions to inform large-scale assessment. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 211–240). Rotterdam, The Netherlands: Sense Publishers.
  • Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93, 389–421. doi:10.1002/sce.20303
  • Anderson, C. W. (2008, February). Conceptual and empirical validation of learning progressions. Consortium for Policy Research in Education. Retrieved from http://www.cpre.org/ccii/images/stories/ccii_pdfs/learning%20progressions%20anderson.pdf
  • Anderson, J. A., & Adams, M. (1992). Acknowledging the learning styles of diverse student populations: Implications for instructional design. New Directions for Teaching and Learning, 49, 19–33. doi:10.1002/tl.37219924904
  • Bailer-Jones, D. M. (2003). When scientific models represent. International Studies in the Philosophy of Science, 17, 59–74. doi:10.1080/02698590305238
  • Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83–93. doi:10.1016/j.tate.2014.09.005
  • Bianchini, J. A., Yestness, N., Nilsen, K. J., Kim, J., Hammond, L. M., Carpenter, S.,… Berkowitz, A. R. (2014, March). Learning progression-based teaching strategies in environmental science: Teachers’ successes and struggles in implementation. Paper presented at the NARST annual international conference, Pittsburgh, PA.
  • Black, P. (1993). Formative and summative assessment by teachers. Studies in Science Education, 21, 49–97. doi:10.1080/03057269308560014
  • Black, P., Wilson, M., & Yao, S.-Y. (2011). Roadmaps for learning: A guide to the navigation of learning progressions. Measurement: Interdisciplinary Research and Perspectives, 9, 71–123. doi:10.1080/15366367.2011.591654
  • Blasius, B., Huppert, A., & Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 399, 354–359. doi:10.1038/20676
  • Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 293–316). Rotterdam, The Netherlands: Sense Publishers.
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11, 33–63.
  • Briggs, D. C., Circi, R., & McClarty, K. L. (2014, March). Challenges when using an artificial neural network to make diagnostic classifications from ordered multiple choice items. Paper presented at the annual meeting of the American Educational Research Association. Philadelphia, PA.
  • Buell, J. Y., Tayne, K., & Furtak, E. M. (2018, March). Challenges in supporting teachers’ use of learning progressions for formative assessment. In A. C. Alonzo (Chair), Teachers’ use of learning progressions to inform classroom instruction. Related paper set presented at the NARST Annual International Conference, Atlanta, GA.
  • Carey, S. (1986). Cognitive science and science education. American Psychologist, 41, 1123–1130. doi:10.1037/0003-066X.41.10.1123
  • Charmaz, K. (2000). Grounded theory: Objectivist and constructivist methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 509–535). Thousand Oaks, CA: Sage Publications.
  • Clark, D. B., D’Angelo, C. M., & Schleigh, S. P. (2011). Comparison of students' knowledge structure coherence and understanding of force in the Philippines, Turkey, China, Mexico, and the United States. The Journal of the Learning Sciences, 20, 207–261. doi:10.1080/10508406.2010.508028
  • Clement, J. (1982). Student preconceptions in introductory mechanics. American Journal of Physics, 50, 66–70. doi:10.1119/1.12989
  • Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., & Wolfe, C. B. (2011). Mathematics learned by young children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for Research in Mathematics Education, 42, 127–166.
  • Cochran-Smith, M., Barnatt, J., Friedman, A., & Pine, G. (2009). Inquiry on inquiry: Practitioner research and student learning. Action in Teacher Education, 31, 17–32. doi:10.1080/01626620.2009.10463515
  • Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24, 249–305. doi:10.2307/1167272
  • Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform. (CPRE Research Report #RR-63). Philadelphia, PA: Consortium for Policy Research in Education.
  • Denzin, N. K. (1989). The research act: A theoretical introduction to sociological methods. Englewood Cliffs, NJ: Prentice Hall.
  • diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi:10.1080/07370008.1985.9649008
  • Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46, 606–609. doi:10.1002/tea.20316
  • Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students’ understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46, 655–674. doi:10.1002/tea.20312
  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123–182. doi:10.1080/03057267.2011.604476
  • Elby, A. (2000). What students' learning of representations tells us about constructivism. Journal of Mathematical Behavior, 19, 481–502. doi:10.1016/S0732-3123(01)00054-2
  • Elliott, K. C., & McKaughan, D. J. (2014). Nonepistemic values and the multiple goals of science. Philosophy of Science, 81, 1–21. doi:10.1086/674345
  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.
  • Finegold, M., & Gorksy, P. (1991). Students’ concepts of force as applied to related physical systems: A search for consistency. International Journal of Science Education, 13, 97–113. doi:10.1080/0950069910130109
  • Foster, J., & Wiser, M. (2012). The potential of learning progression research to inform the design of state standards. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 435–459). Rotterdam, The Netherlands: Sense Publishers.
  • Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers’ enactment of formative assessment. Journal of Research in Science Teaching, 49, 1181–1210. doi:10.1002/tea.21054
  • Furtak, E. M., & Heredia, S. C. (2014). Exploring the influence of learning progressions in two teacher communities. Journal of Research in Science Teaching, 51, 982–1020. doi:10.1002/tea.21156
  • Furtak, E. M., Kiemer, K., Swanson, R., de León, V., & Circi, R. K. (2015, April). Learning progressions, formative assessment, and professional development: Results of a longitudinal study. Paper presented at the NARST annual international conference, Chicago, IL.
  • Furtak, E. M., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98, 640–673. doi:10.1002/sce.21122
  • Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752. doi:10.1086/425063
  • Gierl, M. J., Leighton, J. P., & Hunka, S. (2007). Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills. In J. P. Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 242–274). Cambridge, UK: Cambridge University Press.
  • Gopnik, A., & Wellman, H. M. (1992). Why the child's theory of mind really is a theory. Mind & Language, 7, 145–171. doi:10.1111/j.1468-0017.1992.tb00202.x
  • Gotwals, A. W. (2012). Learning progressions for multiple purposes: Challenges in using learning progressions. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 461–472). Rotterdam, The Netherlands: Sense Publishers.
  • Gotwals, A. W., & Anderson, C. W. (2015). Learning progressions. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 596–601). Dordrecht, The Netherlands: Springer.
  • Gotwals, A. W., & Birmingham, D. (2016). Eliciting, identifying, interpreting, and responding to students’ ideas: Teacher candidates’ growth in formative assessment practices. Research in Science Education, 46, 365–388. doi:10.1007/s11165-015-9461-2
  • Gotwals, A. W., & Songer, N. B. (2010). Reasoning up and down a food chain: Using an assessment framework to investigate students’ middle knowledge. Science Education, 94, 259–281.
  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., … & DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310, 987–991. doi:10.1126/science.1116681
  • Grüne-Yanoff, T. (2013). Appraising models nonrepresentationally. Philosophy of Science, 80, 850–861. doi:10.1086/673893
  • Gunckel, K. L., Covitt, B. A., & Salinas, I. (2014, April). Teachers’ uses of learning progression-based tools for reasoning in teaching about water in environmental systems. Paper presented at the NARST annual international conference, Pittsburgh, PA.
  • Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53, 1056–1065. doi:10.1119/1.14031
  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, Physics Education Research Supplement, 68(S1), S52–S59. doi:10.1119/1.19520
  • Hammer, D., Goldberg, F. & Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade classroom. Review of Science, Mathematics and ICT Education, 6(1), 51–72.
  • Hammer, D., & Sikorski, T.-R. (2015). Implications of complexity for research on learning progressions. Science Education, 99, 424–431. doi:10.1002/sce.21165
  • Heredia, S., Furtak, E. M., & Morrison, D. (2012, March). Item context: How organisms used to frame natural selection items influence student response choices. Paper presented at the NARST annual international conference, Indianapolis, IN.
  • Heritage, M. (2008). Learning progressions: Supporting instruction and formative assessment. Washington, DC: Council of Chief State School Officers. Retrieved from http://www.ccsso.org/Documents/2008/Learning_Progressions_Supporting_2008.pdf
  • Heritage, M., Kim, J., Vendlinski, T., & Herman, J. (2009). From evidence to action: A seamless process in formative assessment? Educational Measurement: Issues and Practice, 28(3), 24–31. doi:10.1111/j.1745-3992.2009.00151.x
  • Hesse, M. B. (1966). Models and analogies in science (Vol. 7). Notre Dame, IN: University of Notre Dame Press.
  • Hestenes, D., & Wells, M. (1992). A mechanics baseline test. The Physics Teacher, 30, 159–166.
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–166. doi:10.1119/1.2343497
  • Ioannides, C., & Vosniadou, S. (2001). The changing meanings of force: From coherence to fragmentation. Cognitive Science Quarterly, 2(1), 5–62. Retrieved from the University of Athens website: http://www.cs.phs.uoa.gr/el/staff/vosniadou/force.pdf.
  • Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49, 1149–1180. doi:10.1002/tea.21051
  • Jin, H., Shin, H. J., Johnson, M., Jinho, K., & Anderson, C. W. (2014). Promise and problems of learning progression-guided interventions. Retrieved from http://www.pathwaysproject.kbs.msu.edu/wp-content/uploads/2013/12/CarbonPCK_03242014.pdf
  • Kagan, D. M. (1990). Ways of evaluating teacher cognition: Inferences concerning the Goldilocks principle. Review of Educational Research, 60, 419–469. doi:10.3102/00346543060003419
  • Kane, M. T., & Bejar, I. I. (2014). Cognitive frameworks for assessment, teaching, and learning: A validity perspective. Psicología Educativa, 20, 117–123. doi:10.1016/j.pse.2014.11.006
  • Knuuttila, T. (2005). Models, representation, and mediation. Philosophy of science, 72: Proceedings of the 2004 Biennial Meeting of the Philosophy of Science Association, 1260–1271. doi:10.1086/508124
  • Korthagen, F. A., & Kessels, J. P. A. M. (1999). Linking theory and practice: Changing the pedagogy of teacher education. Educational Researcher, 28(4), 4–17. doi:10.3102/0013189X028004004
  • Lehrer, R., & Schauble, L. (2009). Images of learning, images of progress. Journal of Research in Science Teaching, 46, 731–735. doi:10.1002/tea.20317
  • Lehrer, R., & Schauble, L. (2015). Learning progressions: The whole world is NOT a stage. Science Education, 99, 432–437. doi:10.1002/sce.21168
  • Loughran, J., Milroy, P., Berry, A., Gunstone, R., & Mulhall, P. (2001). Documenting science teachers’ pedagogical content knowledge through PaP-eRs. Research in Science Education, 31, 289–307. doi:10.1023/A:1013124409567
  • May, R. M. (1973a). Qualitative stability in model ecosystems. Ecology, 54, 638–641. doi:10.2307/1935352
  • May, R. M. (1973b). Time-delay versus stability in population models with two and three trophic levels. Ecology, 54, 315–325. doi:10.2307/1934339
  • McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., & Smith, L. B. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14, 348–356. doi:10.1016/j.tics.2010.06.002
  • McCloskey, M. (1983a). Intuitive physics. Scientific American, 249, 122–130.
  • McCloskey, M. (1983b). Naive theories of motion. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 299–324). Hillsdale, NJ: Lawrence Erlbaum.
  • Minstrell, J., Anderson, R., & Li, M. (2011, May). Building on learner thinking: A framework for assessment in instruction. Commissioned paper for the Committee on Highly Successful STEM Schools or Programs for K-12 STEM Education. National Academies of Science.
  • Mohan, L., & Anderson, C. W. (2009, June). Teaching experiments and the carbon cycle learning progression. Paper presented at the Learning Progressions in Science (LeaPS) conference, Iowa City, IA. Retrieved from http://education.msu.edu/projects/leaps/proceedings/Mohan.pdf
  • Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46, 675–698. doi:10.1002/tea.20314
  • National Research Council. (2006). Systems for state science assessment. Washington, DC: National Academies Press.
  • National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: The National Academies Press.
  • Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162–188. doi:10.1002/tea.21061
  • Ngai, C., Sevian, H., & Talanquer, V. (2014). What is this substance? What makes it different? Mapping progression in students’ assumptions about chemical identity. International Journal of Science Education, 36, 2438–2461. doi:10.1080/09500693.2014.927082
  • Odenbaugh, J. (2005). Idealized, inaccurate, but successful: A pragmatic approach to evaluating models in theoretical ecology. Biology and Philosophy, 20, 231–255. doi:10.1007/s10539-004-0478-6
  • Otero, V. K. (2006). Moving beyond the “get it or don’t” conception of formative assessment. Journal of Teacher Education, 57, 247–255. doi:10.1177/0022487105285963
  • Palmer, D. (2001). Students' alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23, 691–706. doi:10.1080/09500690010006527
  • Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9(3), 105–119. doi:10.1111/j.1539-6053.2009.01038.x
  • Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. HSR: Health Services Research, 34(5) Part II, 1189–1208.
  • Pierson, J. L. (2008). The relationship between patterns of classroom discourse and mathematics learning (Doctoral dissertation). The University of Texas at Austin.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. doi:10.1002/sce.3730660207
  • Riggan, M., & Oláh, L. N. (2011). Locating interim assessments within teachers’ assessment practice. Educational Assessment, 16(1), 1–13. doi:10.1080/10627197.2011.551085
  • Ruiz-Primo, M. A., & Furtak, E. M. (2006). Informal formative assessment and scientific inquiry: Exploring teachers’ practices and student learning. Educational Assessment, 11, 205–235.
  • Schneider, R. M., & Plasman, K. (2011). Science teacher learning progressions: A review of science teachers’ pedagogical content knowledge development. Review of Educational Research, 81, 530–565. doi:10.3102/0034654311423382
  • Schwab, J. J. (1960). What do scientists do? Behavioral Science, 5(1), 1–27. doi:10.1002/bs.3830050102
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15, 10–23. doi:10.1039/C3RP00111C
  • Shavelson, R. J., Yin, Y., Furtak, E. M., Ruiz-Primo, M. A., Ayala, C. C., Young, D. B., Pottenger, F. M. III. (2008). On the role and impact of formative assessment on science inquiry teaching and learning. In J. E. Coffey, R. Douglas, & C. Sterns (Eds.), Assessing science learning: Perspectives from research and practice (pp. 21–36). Arlington, VA: NSTA Press.
  • Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43, 535–555. doi:10.1002/tea.20136
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. doi:10.3102/0013189X015002004
  • Siegler, R. S. (1996). Emerging minds: The process of change in children's thinking. Oxford University Press.
  • Sikorski, T.-R., & Hammer, D. (2010). A critique of how learning progressions research conceptualizes sophistication and progress. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Proceedings of the 9th International Conference of the Learning Sciences - Volume 1, Full Papers (pp. 1032–1039). Chicago, IL: International Society of the Learning Sciences.
  • Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Measurement: Interdisciplinary Research and Perspectives, 14, 1–98. doi:10.1080/15366367.2006.9678570
  • Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46, 610–631. doi:10.1002/tea.20313
  • Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: A systematic review of empirical mathematics education research. ZDM, 48(1), 1–27. doi:10.1007/s11858-016-0775-y
  • Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46, 699–715. doi:10.1002/tea.20308
  • Stevens, S. Y., Delgado, C. & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for nature of matter. Journal of Research in Science teaching, 47, 687–715. doi:10.1002/tea.20324
  • Stevens, S. Y., Shin, N., & Krajcik, J. (2009, June). Towards a model for the development of an empirically tested learning progression. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA. Retrieved from http://education.msu.edu/projects/leaps/proceedings/Stevens.pdf
  • Swackhamer, G., & Hestenes, D. (2005). Energy concept inventory. Retrieved from http://modeling.asu.edu/MNS/MNS.html
  • Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based instruction: Toward a theory of teaching. Educational Researcher, 41, 147–156. doi:10.3102/0013189X12442801
  • Thagard, P. (2002). Coherence in thought and action. Cambridge, MA: MIT Press.
  • Thagard, P. (2007). Coherence, truth, and the development of scientific knowledge. Philosophy of Science, 74, 28–47. doi:10.1086/520941
  • Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.
  • Thornton, R. K., & Sokoloff, D. R. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics, 58(9), 858–867. doi:10.1119/1.16350
  • Todd, A., & Kenyon, L. (2016). Empirical refinements of a molecular genetics learning progression: The molecular constructs. Journal of Research in Science Teaching, 53, 1385–1418. doi:10.1002/tea.21262
  • Trout, J. D. (2002). Scientific explanation and the sense of understanding. Philosophy of Science, 69, 212–233. doi:10.1086/341050
  • Vosniadou, S. (2002). On the nature of naïve physics. In M. Limón & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61–76). Dordrecht, The Netherlands: Springer.
  • Wiser, M., Frazier, K. E., & Fox, V. (2013). At the beginning was amount of material: A learning progression for matter for early elementary grades. In G. Tsaparlis & H. Sevian (Eds.), Conceptions of matter in science education (pp. 95–122). Dordrecht, The Netherlands: Springer.
  • Wiser, M., Smith, C. L., Asbell-Clarke, J, & Doubler, S. (2009, April). Developing and refining a learning progression for matter: The Inquiry Project: Grades 3–5. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.
  • Wiser, M., Smith, C. L., & Doubler, S. (2012). Learning progressions as tools for curriculum development. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 359–403). Rotterdam, The Netherlands: Sense Publishers.
  • Yin, Y., Tomita, M. K., & Shavelson, R. J. (2013). Using formal embedded formative assessments aligned with a short-term learning progression to promote conceptual change and achievement in science. International Journal of Science Education, 36, 531–552. doi:10.1080/09500693.2013.787556

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.