525
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A survey on technological tools and systems for diagnosis and therapy of autism spectrum disorder

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 145-173 | Received 21 Nov 2022, Accepted 25 Jul 2023, Published online: 09 Aug 2023

References

  • Abu-Amara, F., Bensefia, A., Mohammad, H., & Tamimi, H. (2021). Robot and virtual reality-based intervention in autism: A comprehensive review. International Journal of Information Technology (Singapore), 13(5), 1879–1891. https://doi.org/10.1007/s41870-021-00740-9
  • Alessandrini, A., Cappelletti, A., & Zancanaro, M. (2014). Audio-augmented paper for therapy and educational intervention for children with autistic spectrum disorder. International Journal of Human-Computer Studies, 72(4), 422–430. https://doi.org/10.1016/j.ijhcs.2013.12.001
  • Almazaydeh, L., Al-Mohtadi, R., Abuhelaleh, M., & Tawil, A. A. (2022). Virtual reality technology to support the independent living of children with autism. International Journal of Electrical & Computer Engineering, 12(4), 4111. https://doi.org/10.11591/ijece.v12i4.pp4111-4117
  • Alnajjar, F., Cappuccio, M. L., Mubin, O., Arshad, R., & Shahid, S. (2020). Humanoid robots and autistic children: A review on technological tools to assess social attention and engagement. International Journal of Humanoid Robotics, 17(6), 2030001. https://doi.org/10.1142/S0219843620300019
  • Amara, K., Boudjemila, C., Zenati, N., Djekoune, O., Aklil, D., & Kenoui, M. (2022). AR computer-assisted learning for children with ASD based on hand gesture and voice interaction. IETE Journal of Research, 1–17. https://doi.org/10.1080/03772063.2022.2101554
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596
  • Anagnostopoulou, P., Alexandropoulou, V., Lorentzou, G., Lykothanasi, A., Ntaoun- Taki, P., & Drigas, A. (2020). Artificial intelligence in autism assessment. In- Ternational Journal of Emerging Technologies in Learning, 15(6), 95–107. https://doi.org/10.3991/ijet.v15i06.11231
  • Artoni, S., Buzzi, M. C., Buzzi, M., Fenili, C., Leporini, B., Mencarini, S., & Senette, C. (2013). A portable application for supporting ABA intervention (R. Manduchi, Ed.). Journal of Assistive Technologies, 7(2), 78–92. https://doi.org/10.1108/17549451311328763
  • Bai, Z., Blackwell, A. F., & Coulouris, G. (2015). Using augmented reality to elicit pretend play for children with autism. IEEE Transactions on Visualization and Computer Graphics, 21(5), 598–610. https://doi.org/10.1109/tvcg.2014.2385092
  • Baron-Cohen, S., & Hadwin, J. A. (1999). Teaching children with autism to mind-read: A practical guide for teachers and parents. John Wiley & Sons.
  • Beaudoin, A. J., Pedneault, F., Houle, M., Bilodeau, C., Gauvin, M.-P., Groleau, D., Brochu, P., & Couture, M. (2021). Case study assessing the feasibility of using a wearable haptic device or humanoid robot to facilitate transitions in occupational therapy sessions for children with autism spectrum disorder. Journal of Rehabilitation and Assistive Technologies Engineering, 8, 205566832110490. https://doi.org/10.1177/20556683211049041
  • Bekele, E., Lahiri, U., Swanson, A. R., Crittendon, J. A., Warren, Z. E., & Sarkar, N. (2013). A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 289–299. https://doi.org/10.1109/TNSRE.2012.2230188
  • Ben-Sasson, A., Lamash, L., & Gal, E. (2012). To enforce or not to enforce? the use of collaborative interfaces to promote social skills in children with high functioning autism spectrum disorder. Autism, 17(5), 608–622. https://doi.org/10.1177/1362361312451526
  • Bolte, S., Feineis-Matthews, S., Leber, S., Dierks, T., Hubl, D., & Poustka, F. (2002). The development and evaluation of a computer-based program to test and to teach the recognition of facial affect. International Journal of Circumpolar Health, 61(sup 2), 61–68. https://doi.org/10.3402/ijch.v61i0.17503
  • Bondioli, M., Chessa, S., Narzisi, A., Pelagatti, S., & Piotrowicz, D. (2019). Capturing play activities of young children to detect autism red flags. 10th International Symposium on Ambient Intelligence (ISAMI 2019), Avila, Spain. (pp. 71–79). Cham: Springer. https://doi.org/10.1007/978-3-030-24097-4_9
  • Bondioli, M., Chessa, S., Narzisi, A., Pelagatti, S., & Zoncheddu, M. (2021). Towards motor-based early detection of autism red flags: Enabling technology and ex- ploratory study protocol. Sensors, 21(6), 1971. https://doi.org/10.3390/s21061971
  • Bosseler, A., & Massaro, D. (2003). Development and evaluation of a computer- animated tutor for vocabulary and language learning in children with autism. Journal of Autism & Developmental Disorders, 33(6), 653–672. https://doi.org/10.1023/B:JADD.0000006002.82367.4f
  • Boyle, B., & Arnedillo-Sanchez, I. (2022). The inclusion of children on the autism spectrum in the design of learning technologies: A small-scale exploration of adults’ perspectives. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.867964
  • Cai, Y., Chia, N. K. H., Thalmann, D., Kee, N. K. N., Zheng, J., & Thalmann, N. M. (2013). Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 208–217. https://doi.org/10.1109/tnsre.2013.2240700
  • Cañete, R., Lopez, S., & Peralta, M. E. (2021). Keyme: Multifunctional smart toy for children with autism spectrum disorder. Sustainability, 13(7), 4010. https://doi.org/10.3390/su13074010
  • Cao, H.-L., Esteban, P. G., Bartlett, M., Baxter, P., Belpaeme, T., Billing, E., Cai, H., Coeckelbergh, M., Costescu, C., David, D., Beir, A. D., Hernandez, D., Kennedy, J., Liu, H., Matu, S., Mazel, A., Pandey, A., Richardson, K. … Ziemke, T. (2019). Robot-enhanced therapy: Development and validation of supervised autonomous robotic system for autism spectrum disorders therapy. IEEE Robotics & Automation Magazine, 26(2), 49–58. https://doi.org/10.1109/mra.2019.2904121
  • Caro, K., Tentori, M., Martinez-Garcia, A. I., & Alvelais, M. (2017). Using the Frog- gyBobby exergame to support eye-body coordination development of children with severe autism. International Journal of Human-Computer Studies, 105, 12–27. https://doi.org/10.1016/j.ijhcs.2017.03.005
  • Caruso, A., Gila, L., Fulceri, F., Salvitti, T., Micai, M., Baccinelli, W., Bulgheroni, M., & Scattoni, M. L. (2020). Early motor development predicts clinical out- comes of siblings at high-risk for autism: Insight from an innovative motion-tracking technology. Brain Sciences, 10(6), 379. https://doi.org/10.3390/brainsci10060379
  • Castellanos, A. E. O., Liu, C.-M., & Shi, C. (2022). Deep mobile linguistic therapy for patients with ASD. International Journal of Environmental Research and Public Health, 19(19), 12857. https://doi.org/10.3390/ijerph191912857
  • Chen, J., Wang, G., Zhang, K., Wang, G., & Liu, L. (2019). A pilot study on evaluating children with autism spectrum disorder using computer games. Computers in Human Behavior, 90, 204–214. https://doi.org/10.1016/j.chb.2018.08.057
  • Chen, M., Xiao, W., Hu, L., Ma, Y., Zhang, Y., & Tao, G. (2021). Cognitive wearable robotics for autism perception enhancement. ACM Transactions on Internet Technology, 21(4), 1–16. https://doi.org/10.1145/3450630
  • Coleman-Martin, M., Wolff-Heller, K., Cihak, D. F., & I, K. (2005). Using computer-assisted instruction and the nonverbal reading approach to teach word identi- fication. Focus on Autism & Other Developmental Disabilities, 20(2), 80–90. https://doi.org/10.1177/10883576050200020401
  • Daniels, J., Haber, N., Voss, C., Schwartz, J., Tamura, S., Fazel, A., Kline, A., Washington, P., Phillips, J., Winograd, T., Feinstein, C., & Wall, D. (2018). Feasi- bility testing of a wearable behavioral aid for social learning in children with autism. Applied Clinical Informatics, 09(1), 129–140. https://doi.org/10.1055/s-0038-1626727
  • Daniels, J., Schwartz, J. N., Voss, C., Haber, N., Fazel, A., Kline, A., Washington, P., Feinstein, C., Winograd, T., & Wall, D. P. (2018). Exploratory study examining the at-home feasibility of a wearable tool for social-affective learning in children with autism. NPJ Digital Medicine, 1(1). https://doi.org/10.1038/s41746-018-0035-3
  • Dawson, G., & Sapiro, G. (2019). Potential for digital behavioral measurement tools to transform the detection and diagnosis of autism spectrum disorder. JAMA Pediatrics, 173(4), 305. https://doi.org/10.1001/jamapediatrics.2018.5269
  • de Arancibia, L., Sánchez-González, P., Gomez, E. J., Hernando, M. E., & Oropesa, I. (2019). Linear vs nonlinear classification of social joint attention in autism using VR P300-based brain computer interfaces. XV Mediterranean Conference on Medical and Biological Engineering and Computing, Coimbra, Portugal (Vol. 76, pp. 1869–1874). Cham: Springer. https://doi.org/10.1007/978-3-030-31635-8_227
  • Del Coco, M., Leo, M., Carcagni, P., Fama, F., Spadaro, L., Ruta, L., Pioggia, G., & Distante, C. (2018). Study of mechanisms of social interaction stimulation in autism spectrum disorder by assisted humanoid robot. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 993–1004. https://doi.org/10.1109/tcds.2017.2783684
  • De Urturi, Z., Zorrilla, A., & Zapirain, B. (2011). Serious game based on first aid education for individuals with autism spectrum disorder (ASD) using android mobile devices. Proc. Int. Conference on Computer Games (CGAMES), Louisville, KY USA , 223–227. https://doi.org/10.1109/CGAMES.2011.6000343
  • DiNuovo, A., Conti, D., Trubia, G., Buono, S., & DiNuovo, S. (2018). Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics, 7(2), 25. https://doi.org/10.3390/robotics7020025
  • DiPalma, S., Tonacci, A., Narzisi, A., Domenici, C., Pioggia, G., Muratori, F., & Bil- Leci, L. (2017). Monitoring of autonomic response to sociocognitive tasks during treatment in children with autism spectrum disorders by wearable technologies: A feasibility study. Computers in Biology and Medicine, 85, 143–152. https://doi.org/10.1016/j.compbiomed.2016.04.001
  • Douglas, S. N., Shi, Y., Das, S., & Biswas, S. (2021). Validation of wearable sensor technology to measure social proximity of young children with autism spectrum disorders. Focus on Autism and Other Developmental Disabilities, 37(1), 24–33. https://doi.org/10.1177/10883576211028223
  • Egger, H. L., Dawson, G., Hashemi, J., Carpenter, K. L. H., Espinosa, S., Campbell, K., Brotkin, S., Schaich-Borg, J., Qiu, Q., Tepper, M., Baker, J. P., Bloomfield, R. A., & Sapiro, G. (2018). Automatic emotion and attention analysis of young children at home: A ResearchKit autism feasibility study. NPJ Digital Medicine, 1(1), 1. https://doi.org/10.1038/s41746-018-0024-6
  • Egido-Garcıéa, V., Estévez, D., Corrales-Paredes, A., Terron-Lopez, M.-J., & Velasco-Quintana, P.-J. (2020). Integration of a social robot in a pedagogical and logo- pedic intervention with children: A case study. Sensors, 20(22), 6483. https://doi.org/10.3390/s20226483
  • Escobedo, L., Ibarra, C., Hernandez, J., Alvelais, M., & Tentori, M. (2014). Smart objects to support the discrimination training of children with autism. Per- Sonal and Ubiquitous Computing, 18(6), 1485–1497. https://doi.org/10.1007/s00779-013-0750-3
  • Esposito, M., Sloan, J., Tancredi, A., Gerardi, G., Postiglione, P., Fotia, F., Napoli, E., Mazzone, L., Valeri, G., & Vicari, S. (2017). Using tablet applications for children with autism to increase their cognitive and social skills. Journal of Special Education Technology, 32(4), 199–209. https://doi.org/10.1177/0162643417719751
  • Faria, D. R., Bird, J. J., Daquana, C., Kobylarz, J., & Ayrosa, P. P. S. (2020). Towards AI-based interactive game intervention to monitor concentration levels in children with attention deficit. International Journal of Information and Educa- Tion Technology, 10(9), 641–648. https://doi.org/10.18178/ijiet.2020.10.9.1437
  • Feng, H., Mahoor, M. H., & Dino, F. (2022). A music-therapy robotic platform for children with autism: A pilot study. Frontiers in Robotics and AI, 9, 9. https://doi.org/10.3389/frobt.2022.855819
  • Gallardo-Montes, C. P., Caurcel Cara, M. J., & Rodríguez Fuentes, A. (2022). Tech- nologies in the education of children and teenagers with autism: Evaluation and classification of apps by work areas. Education and Information Technologies, 27(3), 4087–4115. https://doi.org/10.1007/s10639-021-10773-z
  • Gevarter, C., Najar, A. M., & Siciliano, M. (2022). Teaching children with autism to create multi-symbol messages on augmentative alternative communication applications during play. Advances in Neurodevelopmental Disorders. https://doi.org/10.1007/s41252-022-00254-w
  • Goodrich, M. A., Colton, M., Brinton, B., Fujiki, M., Atherton, J. A., Robinson, L., Ricks, D., Maxfield, M. H., & Acerson, A. (2012). Incorporating a robot into an autism therapy team. IEEE Intelligent Systems, 27(2), 52–59. https://doi.org/10.1109/mis.2012.40
  • Güler, T. D., & Erdem, M. (2022). Use of mobile social story maps in the development of cognitive and social skills of children with autism spectrum disorder. Journal of Special Education Technology, 37(4), 482–497. https://doi.org/10.1177/01626434211037547
  • Hachisu, T., Pan, Y., Matsuda, S., Bourreau, B., & Suzuki, K. (2018). FaceLooks: A smart headband for signaling face-to-face behavior. Sensors, 18(7), 2066. https://doi.org/10.3390/s18072066
  • Halabi, O., El-Seoud, S. A., Alja’am, J., Alpona, H., Al-Hemadi, M., & Al-Hassan, D. (2017). Design of immersive virtual reality system to improve communication skills in individuals with autism. International Journal of Emerging Technologies in Learning (Ijet), 12(5), 50. https://doi.org/10.3991/ijet.v12i05.6766
  • Hao, Z., Ma, J., & Sun, W. (2022). The technology-oriented pathway for auxiliary diagnosis in the digital health age: A self-adaptive disease prediction model. International Journal of Environmental Research and Public Health, 19(19), 12509. https://doi.org/10.3390/ijerph191912509
  • Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cogni- tive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. https://doi.org/10.1007/s10803-005-0039-0
  • Heath, C. D. C., McDaniel, T., Venkateswara, H., & Panchanathan, S. (2021). Improving communication skills of children with autism through support of applied behavioral analysis treatments using multimedia computing: A survey. Univer- Sal Access in the Information Society, 20(1), 13–30. https://doi.org/10.1007/s10209-019-00707-5
  • Hocking, D. R., Ardalan, A., Abu-Rayya, H. M., Farhat, H., Andoni, A., Lenroot, R., & Kachnowski, S. (2022). Feasibility of a virtual reality-based exercise interven- tion and low-cost motion tracking method for estimation of motor proficiency in youth with autism spectrum disorder. Journal of NeuroEngineering and Rehabilitation, 19(1), 1. https://doi.org/10.1186/s12984-021-00978-1
  • Hosseinzadeh, M., Koohpayehzadeh, J., Bali, A. O., Rad, F. A., Souri, A., Mazaherinezhad, A., Rezapour, A., & Bohlouli, M. (2021). A review on diagnostic autism spectrum disorder approaches based on the internet of things and ma- chine learning. Journal of Supercomputing, 77(3), 2590–2608. https://doi.org/10.1007/s11227-020-03357-0
  • Huijnen, C. A. G. J., Lexis, M. A. S., Jansens, R., & de Witte, L. P. (2016). Mapping robots to therapy and educational objectives for children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(6), 2100–2114. https://doi.org/10.1007/s10803-016-2740-6
  • Iakovidou, N., Lanzarini, E., Singh, J., Fiori, F., & Santosh, P. (2020). Differentiating females with rett syndrome and those with multi-comorbid autism spectrum disorder using physiological biomarkers: A novel approach. Journal of Clinical Medicine, 9(9), 2842. https://doi.org/10.3390/jcm9092842
  • Javed, H., Burns, R., Jeon, M., Howard, A. M., & Park, C. H. (2020). A robotic framework to facilitate sensory experiences for children with autism spectrum disorder. ACM Transactions on Human-Robot Interaction, 9(1), 1–26. https://doi.org/10.1145/3359613
  • Jialiang, H., Haiyan, Z., & Huiying, Z. (2021). Research on the auxiliary treatment sys- tem of childhood autism based on virtual reality. Journal of Decision Systems, 1–18. https://doi.org/10.1080/12460125.2021.2003512
  • Johnston, D., Egermann, H., & Kearney, G. (2019). Measuring the behavioral response to spatial audio within a multi-modal virtual reality environment in children with autism spectrum disorder. Applied Sciences, 9(15), 3152. https://doi.org/10.3390/app9153152
  • Kientz, J., Hayes, G., Westeyn, T., Starner, T., & Abowd, G. (2007). Pervasive com- puting and autism: Assisting caregivers of children with special needs. IEEE Pervasive Computing, 6(1), 28–35. https://doi.org/10.1109/mprv.2007.18
  • Kohli, M., Kar, A. K., & Sinha, S. (2022a). The role of intelligent technologies in early detection of autism spectrum disorder (asd): A scoping review. IEEE Access, 10, 104887–104913. https://doi.org/10.1109/ACCESS.2022.3208587
  • Kohli, M., Kar, A. K., & Sinha, S. (2022b). The role of intelligent technologies in early detection of autism spectrum disorder (ASD): A scoping review. IEEE Access, 10, 104887–104913. https://doi.org/10.1109/access.2022.3208587
  • Kojovic, N., Natraj, S., Mohanty, S. P., Maillart, T., & Schaer, M. (2021). Using 2d video-based pose estimation for automated prediction of autism spectrum disorders in young children. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94378-z
  • Kozima, H., Michalowski, M. P., & Nakagawa, C. (2009). Keepon. International Jour- Nal of Social Robotics, 1(1), 3–18. https://doi.org/10.1007/s12369-008-0009-8
  • Kuriakose, S., & Lahiri, U. (2017). Design of a physiology-sensitive VR-based social communication platform for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8), 1180–1191. https://doi.org/10.1109/tnsre.2016.2613879
  • Lahiri, U., Bekele, E., Dohrmann, E., Warren, Z., & Sarkar, N. (2013). Design of a virtual reality based adaptive response technology for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(1), 55–64. https://doi.org/10.1109/tnsre.2012.2218618
  • Lang, N., Goes, N., Struck, M., Wittenberg, T., Goes, N., Seßner, J., Franke, J., Wittenberg, T., Dziobek, I., Kirst, S., & Naumann, S. (2021). Evaluation of an algorithm for optical pulse detection in children for application to the pepper robot. Current Directions in Biomedical Engineering, 7(2), 484–487. https://doi.org/10.1515/cdbme-2021-2123
  • Lee, J., Lee, T. S., Lee, S., Jang, J., Yoo, S., Choi, Y., & Park, Y. R. (2022). Devel- opment and application of a metaverse-based social skills training program for children with autism spectrum disorder to improve social interaction: Proto- col for a randomized controlled trial. JMIR Research Protocols, 11(6), e35960. https://doi.org/10.2196/35960
  • Lin, C.-S., Chang, S.-H., Liou, W.-Y., & Tsai, Y.-S. (2013). The development of a multimedia online language assessment tool for young children with autism. Research in Developmental Disabilities, 34(10), 3553–3565. https://doi.org/10.1016/j.ridd.2013.06.042
  • Liu, Y., Zuo, S., & Hsu, C.-L. (2021). Interactive cognitive training tool designed for autism spectrum disorder children. Sensors and Materials, 33(1), 405. https://doi.org/10.18494/sam.2021.3024
  • Louie, W.-Y. G., Korneder, J., Abbas, I., & Pawluk, C. (2020). A study on an applied behavior analysis-based robot-mediated listening comprehension intervention for ASD. Paladyn, Journal of Behavioral Robotics, 12(1), 31–46. https://doi.org/10.1515/pjbr-2021-0005
  • Macpherson, K., Charlop, M. H., & Miltenberger, C. A. (2014). Using portable video modeling technology to increase the compliment behaviors of children with autism during athletic group play. Journal of Autism and Developmental Dis- Orders, 45(12), 3836–3845. https://doi.org/10.1007/s10803-014-2072-3
  • Maenner, M. J., Shaw, K. A., Bakian, A. V., Bilder, D. A., Durkin, M. S., Esler, A., Furnier, S. M., Hallas, L., Hall-Lande, J., Hudson, A., Hughes, M. M., Patrick, M., Pierce, K., Poynter, J. N., Salinas, A., Shenouda, J., Vehorn, A., Warren, Z. … Lopez, 5. (2021). Prevalence and characteristics of autism spectrum disorder among children aged 8 years — Autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveillance Summaries, 70(11), 1–16.
  • Mairena, M. Á., Mora-Guiard, J., Malinverni, L., Padillo, V., Valero, L., Hervás, A., & Pares, N. (2019). A full-body interactive videogame used as a tool to foster social initiation conducts in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 67, 101438. https://doi.org/10.1016/j.rasd.2019.101438
  • Ma, X., & Yang, J. (2021). Development of the interactive rehabilitation game system for children with autism based on game psychology (F. Khan, Ed.). Mobile Information Systems, 2021, 1–9. https://doi.org/10.1155/2021/6020208
  • Mertz, L. (2021). Ai, virtual reality, and robots advancing autism diagnosis and ther- apy. IEEE Pulse, 12(5), 6–10. https://doi.org/10.1109/MPULS.2021.3113092
  • Modugumudi, Y. R., Santhosh, J., & Anand, S. (2013). Efficacy of collaborative virtual environment intervention programs in emotion expression of children with autism. Journal of Medical Imaging and Health Informatics, 3(2), 321–325. https://doi.org/10.1166/jmihi.2013.1167
  • Morales, A., Cibrian, F. L., Castro, L. A., & Tentori, M. (2022). An adaptive model to support biofeedback in AmI environments: A case study in breathing training for autism. Personal and Ubiquitous Computing, 26(6), 1445–1460. https://doi.org/10.1007/s00779-020-01512-1
  • Mruzek, D. W., McAleavey, S., Loring, W. A., Butter, E., Smith, T., McDonnell, E., Levato, L., Aponte, C., Travis, R. P., Aiello, R. E., Taylor, C. M., Wilkins, J. W., Corbett-Dick, P., Finkelstein, D. M., York, A. M., & Zanibbi, K. (2019). A pilot investigation of an Ios-based app for toilet training children with autism spectrum disorder. Autism, 23(2), 359–370. https://doi.org/10.1177/1362361317741741
  • Muharib, R., Alzrayer, N. M., Wood, C. L., & Voggt, A. P. (2019). Backward chaining and speech-output technologies to enhance functional communication skills of children with autism spectrum disorder and developmental disabilities. Augmentative and Alternative Communication, 35(4), 251–262. https://doi.org/10.1080/07434618.2019.1704433
  • Narzisi, A., Bondioli, M., Pardossi, F., Billeci, L., Buzzi, M. C., Buzzi, M., Pinzino, M., Senette, C., Semucci, V., Tonacci, A., Uscidda, F., Vagelli, B., Giuca, M. R., & Pelagatti, S. (2020). “Mom Let’s Go to the Dentist!” preliminary feasibility of a tailored dental intervention for children with autism spectrum disorder in the Italian public health service. Brain Sciences, 10(7), 444. https://doi.org/10.3390/brainsci10070444
  • Narzisi, A., Posada, M., Barbieri, F., Chericoni, N., Ciuffolini, D., Pinzino, M., Romano, R., Scattoni, M., Tancredi, R., Calderoni, S., & Muratori, F. (2018). Prevalence of autism spectrum disorder in a large Italian catchment area: A school-based population study within the ASDEU project. Epidemiology and Psychiatric Sciences, 29. https://doi.org/10.1017/S2045796018000483
  • Nguyen, J., Cardy, R. E., Anagnostou, E., Brian, J., & Kushki, A. (2021). Examin- ing the effect of a wearable, anxiety detection technology on improving the awareness of anxiety signs in autism spectrum disorder: A pilot randomized controlled trial. Molecular Autism, 12(1). https://doi.org/10.1186/s13229-021-00477-z
  • Nie, G., Ullal, A., Zheng, Z., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2021). An immersive computer-mediated caregiver-child interaction system for young children with autism spectrum disorder. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 884–893. https://doi.org/10.1109/tnsre.2021.3077480
  • Nunez, E., Matsuda, S., Hirokawa, M., Yamamoto, J., & Suzuki, K. (2018). Effect of sensory feedback on turn-taking using paired devices for children with ASD. Multimodal Technologies and Interaction, 2(4), 61. https://doi.org/10.3390/mti2040061
  • Orlandi, S., Manfredi, C., Bocchi, L., & Scattoni, M. L. (2012). Automatic newborn cry analysis: A non-invasive tool to help autism early diagnosis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, California, USA (pp. 2953–2956). https://doi.org/10.1109/EMBC.2012.6346583
  • Özcan, B., Caligiore, D., Sperati, V., Moretta, T., & Baldassarre, G. (2016). Transi- tional wearable companions: A novel concept of soft interactive social robots to improve social skills in children with autism spectrum disorder. International Journal of Social Robotics, 8(4), 471–481. https://doi.org/10.1007/s12369-016-0373-8
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrobjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Wilson, E. … Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). https://doi.org/10.1186/s13643-021-01626-4
  • Palsbo, S. E., & Hood-Szivek, P. (2012). Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: A nonrandomized phase 2 device trial. The American Journal of Occupational Therapy, 66(6), 682–690. https://doi.org/10.5014/ajot.2012.004556
  • Pavez, R., Diaz, J., Arango-Lopez, J., Ahumada, D., Mendez-Sandoval, C., & Moreira, F. (2021). Emo-mirror: A proposal to support emotion recognition in children with autism spectrum disorders. Neural Computing and Applications, 35(11), 7913–7924. https://doi.org/10.1007/s00521-021-06592-5
  • Piccardi, E. S., Begum Ali, J., Jones, E. J. H., Mason, L., Charman, T., Johnson, M. H., Gliga, T., Agyapong, M., Bazelmans, T., Dafner, L., Ersoy, M., Goodwin, A., Haartsen, R., Hendry, A., Holman, R., Kalwarowsky, S., Kolesnik, A., Lloyd-Fox, S. … Team, B. (2021). Behavioural and neural markers of tactile sensory processing in infants at elevated likelihood of autism spectrum disorder and/or attention deficit hyperactivity disorder. Journal of Neurodevelopmental Disorders, 13(1). https://doi.org/10.1186/s11689-020-09334-1
  • Porayska-Pomsta, K., Alcorn, A. M., Avramides, K., Beale, S., Bernardini, S., Foster, M. E., Frauenberger, C., Good, J., Guldberg, K., Keay-Bright, W., Kossyvaki, L., Lemon, O., Mademtzi, M., Menzies, R., Pain, H., Rajendran, G., Waller, A., Wass, S., & Smith, T. J. (2018). Blending human and artificial intelligence to support autistic children’s social communication skills. ACM Transactions on Computer-Human Interaction, 25(6), 1–35. https://doi.org/10.1145/3271484
  • Préfontaine, I., Lanovaz, M. J., McDuff, E., McHugh, C., & Cook, J. L. (2019). Using mobile technology to reduce engagement in stereotypy: A validation of decision- making algorithms. Behavior Modification, 43(2), 222–245. https://doi.org/10.1177/0145445517748560
  • Puli, A., & Kushki, A. (2020). Toward automatic anxiety detection in autism: A real- time algorithm for detecting physiological arousal in the presence of motion. IEEE Transactions on Biomedical Engineering, 67(3), 646–657. https://doi.org/10.1109/TBME.2019.2919273
  • Radoff, J. (2021). The metaverse value-chain 19 October 2022. https://medium.com/building-the-metaverse/the-metaverse-value-chain-afcf9e09e3a7
  • Rahman, M., Ferdous, S., Ahmed, S. I., & Anwar, A. (2011). Speech development of autistic children by interactive computer games (M. Ketterl, Ed.). Interactive Technology & Smart Education, 8(4), 208–223. https://doi.org/10.1108/17415651111189450
  • Ramírez-Duque, A. A., Aycardi, L. F., Villa, A., Munera, M., Bastos, T., Belpaeme, T., Frizera-Neto, A., & Cifuentes, C. A. (2021). Collaborative and inclusive process with the autism community: A case study in colombia about social robot design. International Journal of Social Robotics, 13(2), 153–167. https://doi.org/10.1007/s12369-020-00627-y
  • Rashidan, M. A., Sidek, S. N., Yusof, H. M., Khalid, M., Dzulkarnain, A. A. A., Ghazali, A. S., Zabidi, S. A. M., & Sidique, F. A. A. (2021). Technology- assisted emotion recognition for autism spectrum disorder (asd) children: A systematic literature review. IEEE Access, 9, 33638–33653. https://doi.org/10.1109/ACCESS.2021.3060753
  • Raya, M. A., Marıén-Morales, J., Minissi, M. E., Garcia, G. T., Abad, L., & Giglioli, I. A. C. (2020). Machine learning and virtual reality on body movements’ behaviors to classify children with autism spectrum disorder. Journal of Clinical Medicine, 9(5), 1260. https://doi.org/10.3390/jcm9051260
  • Robins, B., & Dautenhahn, K. (2014). Tactile interactions with a humanoid robot: Novel play scenario implementations with children with autism. International Journal of Social Robotics, 6(3), 397–415. https://doi.org/10.1007/s12369-014-0228-0
  • Saleh, M. A. (2019). A deep learning approach in robot-assisted behavioral therapy for autistic children. International Journal of Advanced Trends in Computer Science & Engineering, 8(1.6), 437–443. https://doi.org/10.30534/ijatcse/2019/6381.62019
  • Santos, N. B., Bavaresco, R. S., Tavares, J. E. R., Ramos, G. D. O., & Barbosa, J. L. V. (2021). A systematic mapping study of robotics in human care. Robotics and Autonomous Systems, 144, 103833. https://doi.org/10.1016/j.robot.2021.103833
  • Schafer, E. C., Gopal, K. V., Mathews, L., Thompson, S., Kaiser, K., McCullough, S., Jones, J., Castillo, P., Canale, E., & Hutcheson, A. (2019). Effects of auditory training and remote microphone technology on the behavioral performance of children and young adults who have autism spectrum disorder. Journal of the American Academy of Audiology, 30(5), 431–443. https://doi.org/10.3766/jaaa.18062
  • Shahab, M., Taheri, A., Mokhtari, M., Shariati, A., Heidari, R., Meghdari, A., & Alemi, M. (2022). Utilizing social virtual reality robot (v2r) for music edu- cation to children with high-functioning autism. Education and Information Technologies, 27(1), 819–843. https://doi.org/10.1007/s10639-020-10392-0
  • Shapi’i, A., Rahman, N. A. A., Baharuddin, M. S., & Yaakub, M. R. (2018). Interactive games using hand-eye coordination method for autistic children ther- apy. International Journal on Advanced Science, Engineering and Information Technology, 8(4–2), 1381. https://doi.org/10.18517/ijaseit.8.4-2.6793
  • Simeoli, R., Milano, N., Rega, A., & Marocco, D. (2021). Using technology to identify children with autism through motor abnormalities. Frontiers in Psychology, 12, 12. https://doi.org/10.3389/fpsyg.2021.635696
  • Sotoodeh, M. S., & Taheri-Torbati, H. (2021). A point-light display model for teaching motor skills to children with autism spectrum disorder: An eye-tracking study. Perceptual and Motor Skills, 128(4), 1485–1503. https://doi.org/10.1177/00315125211016814
  • Tan, Q. P., Huang, L., Xu, D., Cen, Y., & Cao, Q. (2022). Serious game for VR road crossing in special needs education. Electronics, 11(16), 2568. https://doi.org/10.3390/electronics11162568
  • Tentori, M., Escobedo, L., & Balderas, G. (2015). A smart environment for children with autism. IEEE Pervasive Computing, 14(2), 42–50. https://doi.org/10.1109/mprv.2015.22
  • Teo, S.-H. J., Poh, X. W. W., Lee, T. S., Guan, C., Cheung, Y. B., Fung, D. S. S., Zhang, H. H., Chin, Z. Y., Wang, C. C., Sung, M., Goh, T. J., Weng, S. J., Tng, X. J. J., & Lim, C. G. (2021). Brain-computer interface based attention and social cognition training programme for children with ASD and co-occurring ADHD: A feasibility trial. Research in Autism Spectrum Disorders, 89, 101882. https://doi.org/10.1016/j.rasd.2021.101882
  • Terlouw, G., van ‘t Veer, J. T., Prins, J. T., Kuipers, D. A., & Pierie, J.-P. E. N. (2020). Design of a digital comic creator (it’s me) to facilitate social skills training for children with autism spectrum disorder: Design research approach. JMIR Mental Health, 7(7), e17260. https://doi.org/10.2196/17260
  • Tunc¸genc¸, B., Pacheco, C., Rochowiak, R., Nicholas, R., Rengarajan, S., Zou, E., Messenger, B., Vidal, R., & Mostofsky, S. H. (2021). Computerized assessment of motor imitation as a scalable method for distinguishing children with autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(3), 321–328. https://doi.org/10.1016/j.bpsc.2020.09.001
  • Valadão, C. T., Goulart, C., Rivera, H., Caldeira, E., Filho, T. F. B., Frizera-Neto, A., & Carelli, R. (2016). Analysis of the use of a robot to improve social skills in children with autism spectrum disorder. Research on Biomedical Engineering, 32(2), 161–175. https://doi.org/10.1590/2446-4740.01316
  • Valori, I., Bayramova, R., McKenna-Plumley, P. E., & Farroni, T. (2020). Sensorimotor research utilising immersive virtual reality: A pilot study with children and adults with autism spectrum disorders. Brain Sciences, 10(5), 259. https://doi.org/10.3390/brainsci10050259
  • Varma, M., Washington, P., Chrisman, B., Kline, A., Leblanc, E., Paskov, K., Stockham, N., Jung, J.-Y., Sun, M. W., & Wall, D. P. (2022). Identification of social engagement indicators associated with autism spectrum disorder using a game-based mobile app: Comparative study of gaze fixation and visual scanning methods. Journal of Medical Internet Research, 24(2), e31830. https://doi.org/10.2196/31830
  • Venkatesh, S., Greenhill, S., Phung, D., Adams, B., & Duong, T. (2012). Pervasive multimedia for autism intervention. Pervasive and Mobile Computing, 8(6), 863–882. https://doi.org/10.1016/j.pmcj.2012.06.010
  • Vivanti, G., Prior, M., Katrina, W., & Dissanayake, C. (2014). Predictors of outcomes in autism early intervention: Why don’t we know more? Frontiers in Pediatrics, 2. https://doi.org/10.3389/fped.2014.00058
  • Voss, C., Schwartz, J., Daniels, J., Kline, A., Haber, N., Washington, P., Tariq, Q., Robinson, T. N., Desai, M., Phillips, J. M., Feinstein, C., Winograd, T., & Wall, D. P. (2019). Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder. JAMA Pediatrics, 173(5), 446. https://doi.org/10.1001/jamapediatrics.2019.0285
  • Wade, J., Sarkar, A., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2017). Pro- cess measures of dyadic collaborative interaction for social skills intervention in individuals with autism spectrum disorders. ACM Transactions on Accessible Computing, 10(4), 1–19. https://doi.org/10.1145/3107925
  • Wall, D. P., Kosmicki, J., Deluca, T. F., Harstad, E., & Fusaro, V. A. (2012). Use of machine learning to shorten observation-based screening and diagnosis of autism. Translational Psychiatry, 2(4), e100. https://doi.org/10.1038/tp.2012.10
  • Wan, G., Deng, F., Jiang, Z., Song, S., Hu, D., Chen, L., Wang, H., Li, M., Chen, G., Yan, T., Su, J., & Zhang, J. (2022). FECTS: A facial emotion cognition and training system for chinese children with autism spectrum disorder (M. Zhou, Ed.). Computational Intelligence and Neuroscience, 2022, 1–21. https://doi.org/10.1155/2022/9213526
  • Wedyan, M., Falah, J., Alturki, R., Giannopulu, I., Alfalah, S. F. M., Elshaweesh, O., & Al-Jumaily, A. (2021). Augmented reality for autistic children to enhance their understanding of facial expressions. Multimodal Technologies and Interaction, 5(8), 48. https://doi.org/10.3390/mti5080048
  • Whitehouse, A. J., Granich, J., Alvares, G., Busacca, M., Cooper, M. N., Dass, A., Duong, T., Harper, R., Marshall, W., Richdale, A., Rodwell, T., Trembath, D., Vellanki, P., Moore, D. W., & Anderson, A. (2017). A randomised controlled trial of an iPad-based application to complement early behavioural intervention in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 58(9), 1042–1052. https://doi.org/10.1111/jcpp.12752
  • Wood, L. J., Zaraki, A., Robins, B., & Dautenhahn, K. (2021). Developing kaspar: A humanoid robot for children with autism. International Journal of Social Robotics, 13(3), 491–508. https://doi.org/10.1007/s12369-019-00563-6
  • Yen, N. Y., Toe, T. T., & Yeung, C. S. (2010). Developing an assistive technology to help children with autism for recognising human emotion. HKIE Transactions, 17(4), 61–68. https://doi.org/10.1080/1023697x.2010.10668213
  • Yun, S.-S., Kim, H., Choi, J., & Park, S.-K. (2016). A robot-assisted behavioral in- tervention system for children with autism spectrum disorders. Robotics and Autonomous Systems, 76, 58–67. https://doi.org/10.1016/j.robot.2015.11.004
  • Zhao, W., & Lu, L. (2020). Research and development of autism diagnosis information system based on deep convolution neural network and facial expression data. Library Hi Tech, 38(4), 799–817. https://doi.org/10.1108/lht-08-2019-0176
  • Zhao, H., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2018). Hand-in-hand: A communication-enhancement collaborative virtual reality system for promoting social interaction in children with autism spectrum disorders. IEEE Transactions on Human-Machine Systems, 48(2), 136–148. https://doi.org/10.1109/THMS.2018.2791562
  • Zheng, Z., Fu, Q., Zhao, H., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2017). Design of an autonomous social orienting training system (ASOTS) for young children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 668–678. https://doi.org/10.1109/tnsre.2016.2598727
  • Zheng, Z., Young, E. M., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2016). Robot-mediated imitation skill training for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 682–691. https://doi.org/10.1109/tnsre.2015.2475724

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.