603
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Comparing the ignition and combustion characteristics of ball-milled Al-based composites with Ti, Zr, and Mg additives

ORCID Icon, , , &

ReferencesReferences

  • Aly, Y., and E. L. Dreizin. 2015. Ignition and combustion of Al·Mg alloy powders prepared by different techniques. Combustion and Flame 162 (4):1440–47. doi:10.1016/j.combustflame.2014.11.010.
  • Aly, Y., M. Schoenitz, and E. L. Dreizin. 2011. Aluminum-metal reactive composites. Combustion Science and Technology 183 (10):1107–32. doi:10.1080/00102202.2011.584090.
  • Aly, Y., M. Schoenitz, and E. L. Dreizin. 2013. Ignition and combustion of mechanically alloyed Al-Mg powders with customized particle sizes. Combustion and Flame 160 (4):835–42. doi:10.1016/j.combustflame.2012.12.011.
  • Anselmi-Tamburini, U., G. Spinolo, G. Flor, and Z. A. Munir. 1997. Combustion synthesis of Zr-Al intermetallic compounds. Journal of Alloys and Compounds 247 (1–2):190–94. doi:10.1016/S0925-8388(96)02587-X.
  • Badiola, C., and E. L. Dreizin. 2013. Combustion of micron-sized particles of titanium and zirconium. Proceedings of the Combustion Institute 34 (2):2237–43. doi:10.1016/j.proci.2012.05.089.
  • Badiola, C., R. J. Gill, and E. L. Dreizin. 2011. Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combustion and Flame 158 (10):2064–70. doi:10.1016/j.combustflame.2011.03.007.
  • Beckstead, M. W., Y. Liang, and K. V. Pudduppakkam. 2005. Numerical simulation of single aluminium particle combustion (review). Combustion, Explosion, and Shock Waves 41 (6):622–38. doi:10.1007/s10573-005-0077-0.
  • Boullosa-Eiras, S., E. Vanhaecke, T. Zhao, D. Chen, and A. Holmen. 2011. Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2-Al2O3 and CeO2-Al 2O3 nanocomposites. Catalysis Today 166 (1):10–17. doi:10.1016/j.cattod.2010.05.038.
  • Corcoran, A. L., S. Wang, Y. Aly, and E. L. Dreizin. 2014. Combustion of mechanically alloyed Al∙Mg powders in products of a hydrocarbon flame. Combustion Science and Technology 187 (5):807–25. doi:10.1080/00102202.2014.973951.
  • DesJardin, P. E., J. D. Felske, and M. D. Carrara. 2005. Mechanistic model for aluminum particle ignition and combustion in air. Journal of Propulsion and Power 21 (3):478–85. doi:10.2514/1.5864.
  • Dreizin, E. L. 1996. Experimental study of stages in aluminum particle combustion in air. Combustion and Flame 105 (4):541–56. doi:10.1016/0010-2180(95)00224-3.
  • Dreizin, E. L. 2000. Phase changes in metal combustion. Progress in Energy and Combustion Science 26 (1):57–78. doi:10.1016/S0360-1285(99)00010-6.
  • Dreizin, E. L. 2003. Effect of phase changes on metal-particle combustion processes. Combustion, Explosion, and Shock Waves 39 (6):681–93. doi:10.1023/B:CESW.0000007682.37878.65.
  • Dreizin, E. L. 2009. Metal-based reactive nanomaterials. Progress in Energy and Combustion Science 35 (2):141–67. doi:10.1016/j.pecs.2008.09.001.
  • Dreizin, E. L., D. G. Keil, W. Felder, and E. P. Vicenzi. 1999. Phase changes in boron ignition and combustion. Combustion and Flame 119 (3):272–90. doi:10.1016/S0010-2180(99)00066-8.
  • Dreizin, E. L., and M. A. Trunov. 1995. Surface phenomena in aluminum combustion. Combustion and Flame 101 (3):378–82. doi:10.1016/0010-2180(94)00241-J.
  • Eapen, B. Z., V. K. Hoffmann, M. Schoenitz, and E. L. Dreizin. 2004. Combustion of aerosolized spherical aluminum powders and flakes in air. Combustion Science and Technology 176 (7):1055–69. doi:10.1080/00102200490426433.
  • Feng, Y., L. Ma, Z. Xia, L. Huang, and D. Yang. 2020. Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles in oxidizing gas flow. Energy 196:117036. doi:10.1016/j.energy.2020.117036.
  • Fischer, S., and M. Grubelich A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. In Proceedings of the 32nd Joint Propulsion Conference and Exhibit; American Institute of Aeronautics and Astronautics: Reston, Virigina, 1996; p. 3018.
  • Grinshpun, S. A., M. Yermakov, R. Indugula, A. Abraham, M. Schoenitz, and E. L. Dreizin. 2017. Aluminum-based materials for inactivation of aerosolized spores of Bacillus anthracis surrogates. Aerosol Science and Technology 51 (2):224–34. doi:10.1080/02786826.2016.1257109.
  • Guo, D., M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang. 2012. High strength and ductility in multimodal-structured Zr. Materials & Design 34:275–78. doi:10.1016/j.matdes.2011.08.002.
  • Jacob, R. J., E. Wainwright, M. Mueller, T. P. Weihs, and M. R. Zachariah. 2017. Enhanced combustion characteristics of electrospray assembled nanothermite composites. In Proceedings of the 10th U.S. National Combustion Meeting, College Park, Maryland, Vol. 2017-April.
  • Joyce, D. M. 2011. Combustion signatures of various energetic metal powders in a shock tube experiment. University of Illinois at Urbana-Champaign.
  • Kim, I. H., C. S. Kim, K. T. Kim, and Y. H. Kim. 2006. Microstructural characterization of Al-Zr alloy with nano-sized grains. Key Engineering Materials 326–328, 429–432. d oi:1 0.4028/w ww.scientific.net/KEM.326-328.429.
  • Kramida, A., Y. Ralchenko, and J. Reader. 2019. NIST atomic spectra database v5.7. NIST Standard Reference Database 78. doi:10.18434/T4W30F.
  • Levitas, V. 2009. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combustion and Flame 156 (2):543–46. doi:10.1016/j.combustflame.2008.11.006.
  • McBride, B. J. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications, Vol. 2. NASA Reference Publication 1311. NASA Lewis Research Center, Cleveland, OH.
  • Mohan, S., M. A. Trunov, and E. L. Dreizin. 2009. On possibility of vapor-phase combustion for fine aluminum particles. Combustion and Flame 156 (11):2213–16. doi:10.1016/j.combustflame.2009.08.007.
  • Molodetsky, I. E., E. P. Vicenzi, E. L. Dreizin, and C. K. Law. 1998. Phases of titanium combustion in air. Combustion and Flame 112 (4):522–32. doi:10.1016/S0010-2180(97)00146-6.
  • Nayak, S. S., S. K. Pabi, and B. S. Murty. 2007. High strength nanocrystalline L12-Al3(Ti,Zr) intermetallic synthesized by mechanical alloying. Intermetallics 15 (1):26–33. doi:10.1016/j.intermet.2006.02.003.
  • Ng, D., and G. Fralick. 2001. Use of a multiwavelength pyrometer in several elevated temperature aerospace applications. Review of Scientific Instruments 72 (2):1522–30. doi:10.1063/1.1340558.
  • Peiris, S. M., and N. Bolden-Frazier. 2019. Applications of reactive materials in munitions. Shock Phenomena in Granular and Porous Materials 165–91. doi:10.1007/978-3-030-23002-9_6.
  • Peuker, J. M., H. Krier, and N. Glumac. 2013. Particle size and gas environment effects on blast and overpressure enhancement in aluminized explosives. Proceedings of the Combustion Institute 34 (2):2205–12. doi:10.1016/j.proci.2012.05.069.
  • Peuker, J. M., P. Lynch, H. Krier, and N. Glumac. 2013. On AlO emission spectroscopy as a diagnostic in energetic materials testing. Propellants, Explosives, Pyrotechnics 38 (4):577–85. doi:10.1002/prep.201200144.
  • Shoshin, Y. L., and E. L. Dreizin. 2006. Particle combustion rates for mechanically alloyed Al-Ti and aluminum powders burning in air. Combustion and Flame 145 (4):714–22. doi:10.1016/j.combustflame.2005.11.006.
  • Stamatis, D., E. R. Wainwright, S. Vummidi Lakshman, M. S. Kessler, and T. P. Weihs. 2020. Combustion of explosively dispersed Al-Mg-Zr composite particles. Combustion and Flame 217:93–102. doi:10.1016/j.combustflame.2020.03.012.
  • Stoimenov, P. K., R. L. Klinger, G. L. Marchin, and K. J. Klabunde. 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir 18 (17):6679–86. doi:10.1021/la0202374.
  • Terry, B. C., I. E. Gunduz, M. A. Pfeil, T. R. Sippel, and S. F. Son. 2017. A mechanism for shattering microexplosions and dispersive boiling phenomena in aluminum-lithium alloy based solid propellant. Proceedings of the Combustion Institute 36 (2):2309–16. doi:10.1016/j.proci.2016.06.099.
  • Trunov, M. A., M. Schoenitz, and E. L. Dreizin. 2005. Ignition of aluminum powders under different experimental conditions. Propellants, Explosives, Pyrotechnics 30 (1):36–43. doi:10.1002/prep.200400083.
  • Valluri, S. K., M. Schoenitz, and E. L. Dreizin. 2019. Combustion of aluminum-metal fluoride reactive composites in different environments. Propellants, Explosives, Pyrotechnics 44 (10):1327–36. doi:10.1002/prep.201900072.
  • Vummidi Lakshman, S., J. D. Gibbins, E. R. Wainwright, and T. P. Weihs. 2019. The effect of chemical composition and milling conditions on composite microstructure and ignition thresholds of Al Zr ball milled powders. Powder Technology 343:87–94. doi:10.1016/j.powtec.2018.11.012.
  • Wagner, G. W., P. W. Bartram, O. Koper, and K. J. Klabunde. 1999. Reactions of VX, GD, and HD with nanosize MgO. The Journal of Physical Chemistry B 103 (16):3225–28. doi:10.1021/jp984689u.
  • Wainwright, E. R., S. V. Lakshman, A. F. T. Leong, A. H. Kinsey, J. D. Gibbins, S. Q. Arlington, T. Sun, K. Fezzaa, T. C. Hufnagel, and T. P. Weihs. 2019. Viewing internal bubbling and microexplosions in combusting metal particles via x-ray phase contrast imaging. Combustion and Flame 199:194–203. doi:10.1016/j.combustflame.2018.10.019.
  • Wainwright, E. R., S. W. Dean, S. Vummidi Lakshman, T. P. Weihs, and J. L. Gottfried. 2020a. Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels. Combustion and Flame 213:357–68. doi:10.1016/j.combustflame.2019.12.009.
  • Wainwright, E. R., S. W. Dean, S. Vummidi Lakshman, T. P. Weihs, and J. L. Gottfried. 2020b. Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels; Baltimore.
  • Wainwright, E. R., T. A. Schmauss, S. Vummidi Lakshman, K. R. Overdeep, and T. P. Weihs. 2018. Observations during Al: Zr composite particle combustion in varied gas environments. Combustion and Flame 196:487–99. doi:10.1016/j.combustflame.2018.06.026.
  • Wainwright, E. R., and T. P. Weihs. 2020. Microstructure and ignition mechanisms of reactive aluminum–zirconium ball milled composite metal powders as a function of particle size. Journal of Materials Science 55 (29):14243–63. doi:10.1007/s10853-020-05031-5.
  • Wang, S., A. Abraham, Z. Zhong, M. Schoenitz, and E. L. Dreizin. 2016. Ignition and combustion of boron-based Al·B·I2 and Mg·B·I2 composites. Chemical Engineering Journal 293:112–17. doi:10.1016/j.cej.2016.02.071.
  • Ward, T. S., M. A. Trunov, M. Schoenitz, and E. L. Dreizin. 2006. Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fuels. International Journal of Heat and Mass Transfer 49 (25–26):4943–54. doi:10.1016/j.ijheatmasstransfer.2006.05.025.
  • Yang, D. K., P. D. Hodgson, and C. E. Wen. 2010. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure. Scripta Materialia 63 (9):941–44. doi:10.1016/j.scriptamat.2010.07.010.
  • Yen, N. H., and L. Y. Wang. 2012. Reactive metals in explosives. Propellants, Explosives, Pyrotechnics 37 (2):143–55. doi:10.1002/prep.200900050.
  • Yetter, R. A., G. A. Risha, and S. F. Son. 2009. Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute 32 (II):1819–38. doi:10.1016/j.proci.2008.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.