455
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The effect of micro-nano TKX-50 particle gradation on the properties of TNT based castable explosives

, , , , , , , ORCID Icon & ORCID Icon show all

References

  • An, Q., T. Cheng, W. A. Goddard, and S. V. Zybin. 2015. Anisotropic impact sensitivity and shock induced plasticity of TKX-50 (Dihydroxylammonium 5,5′-bis(tetrazole)-1,1′-diolate) single crystals: From large-scale molecular dynamics simulations. The Journal of Physical Chemistry C 119 (4):2196–207. doi:10.1021/jp510951s.
  • Badgujar, D., and M. Talawar. 2017. Thermal and sensitivity study of dihydroxyl ammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50)-based melt cast explosive formulations. Propellants, Explosives, Pyrotechnics42 (8):883–88. 10.1002/prep.201600168.
  • Badgujar, D., K. Kulkarni, D. Sarwade, N. Kumar, and M. Talawar. 2017. Environmentally friendly effluent treatment approaches of dihydroxyl ammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Propellants, Explosives, Pyrotechnics 42:106–10. doi:10.1002/prep.201600072.
  • Cao, X., Y. Shang, K. Meng, G. Yue, L. Yang, Y. Liu, et al. 2019. Fabrication of three-dimensional TKX-50 network-like nanostructures by liquid nitrogen-assisted spray freeze-drying method. Journal of Energetic Materials 37 (3):356–64. doi:10.1080/07370652.2019.1585491.
  • Deng, P., Q. Jiao, and H. Ren. 2020. Nano dihydroxylammonium 5,5ʹ-bistetrazole-1,1ʹ-diolate (TKX-50) sensitized by the liquid medium evaporation-induced agglomeration self-assembly. Journal of Energetic Materials 38 (3):253–60. doi:10.1080/07370652.2019.1695018.
  • Dong, W., S. Chen, S. Jin, and Y. Chen. 2019. Effects of carboxymethylcellulose sodium on the morphology and properties of TKX-50, an insensitive high-energy explosive. Journal of Energetic Materials 37 (2):199–211. doi:10.1080/07370652.2018.1559260.
  • Fischer, N., D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstorfer. 2012. Pushing the limits of energetic materials-The synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. Journal of Materials Chemistry 22 (38):20418–22. doi:10.1039/c2jm33646d.
  • Fisher, N., D. Izsák, T. M. Klapötke, S. Rappenglück, and J. Stierstorfer. 2012. Nitrogen-rich 5,5′-bistetrazolates and their potential use in propellant systems: A comprehensive study. European Journal of Chemistry 18;4051-62. doi:10.1002/chem.201103737.
  • Gottfried, J. L., T. M. Klapötke, and T. G. Witkowski. 2017. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser–induced air shock from energetic materials technique. Propellants, Explosives, Pyrotechnics 42 (4):353–59. doi:10.1002/prep.201600257.
  • Guo, X., G. Ouyang, J. Liu, Q. Li, L. Wang, Z. Gu, et al. 2015. Massive preparation of reduced-sensitivity nano CL-20 and its characterization. Journal of Energetic Materials 33 (1):24–33. doi:10.1080/07370652.2013.877102.
  • Han, G., H. Xiao-ting, K. Xiang, L. Jie, H. Gazi, X. Lei, et al. 2017. Effects of nano-HMX on the properties of RDX-CMDB propellant: Higher energy and lower sensitivity. Definition Technology 13:323–26. doi:10.1016/j.dt.2017.03.006.
  • Hu, L., Y. Liu, S. Hu, and Y. Wang. 2019. 1T/2H multi-phase MoS2 heterostructures: Synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. New Journal of Chemistry 43 (26):10434–41. doi:10.1039/c9nj02749a.
  • Huang, H., Y. Shi, and J. Yang. 2015. Thermal characterization of the promising energetic material. Journal of Thermal Analysis and Calorimetry 121 (2):705–09. doi:10.1007/s10973-015-4472-9.
  • Huang, H., Y. Shi, J. Yang, and B. Li. 2015. Compatibility study of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) with some energetic materials and inert materials. Journal of Energetic Materials 33 (1):66–72. doi:10.1080/07370652.2014.889781.
  • Hussein, A. K., A. Elbeih, and S. Zeman. 2018. Thermo-analytical study of a melt cast composition based on cis-1,3,4,6-tetranitrooctahydroimidazo- [4,5 d] imidazole (BCHMX)/trinitrotoluene (TNT) compared with traditional compositions. Thermochimica acta 666:91–102. doi:10.1016/j.tca.2018.06.006.
  • Jia, X., X. Wang, and J. Wang. 2013. Numerical simulation of temperature field and defects during the solidification process of casting explosive. Ordnance Industry Automation 32:42–44. doi:10.7690/bgzdh.2013.09.012.
  • Jones, S., and C. Yuan. 2003. Advances in shell moulding for investment casting. Journal of Materials Processing Technology 135 (2–3):258–65. doi:10.1016/S0924-0136(02)00907-X.
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards 57 (4):217. doi:10.6028/jres.057.026.
  • Klapötke, T. M., A. Penger, C. Pflüger, and J. Stierstorfer. 2016a. Melt-cast materials: Combining the advantages of highly nitrated azoles and open-chain nitramines. New Journal of Chemistry 40:6059–69. doi:10.1039/c6nj00202a.
  • Klapötke, T. M., T. G. Witkowski, Z. Wilk, and J. Hadzik. 2016b. Determination of the initiating capability of detonators containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a base charge, by underwater explosion test. Propellants, Explosives, Pyrotechnics 41:92–97. doi:10.1002/prep.201500220.
  • Lee, J. S., and C. K. Hsu. 2001. The thermal behaviors and safety characteristics of composition B explosive. Thermochimica acta 371–74. doi:10.1016/S0040-6031(00)00686-9.
  • Li, J. S., J. J. Chen, C. C. Hwang, K. T. Lu, and T. F. Yeh. 2019. Study on thermal characteristics of TNT based melt-cast explosives. Propellants, Explosives, Pyrotechnics 44 (10):1270–81. doi:10.1002/prep.201900078.
  • Li, M., H. Chen, X. Xiao, et al. 2019. Computational study of transition states for reaction path of energetic material TKX-50. Journal of Energetic Materials 37 (2):240–50. doi:10.1080/07370652.2019.1590482.
  • Li, X., X. Cao, X. Bai, Z. Pei, P. Denf, and S. Hu. 2012. Two-dimensional nanoscale MoS2 for thermal catalysis of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-020-09432-1.
  • Liu, Y., C.-W. An, J. Luo, and J.-Y. Wang. 2019. Faster and cleaner method to mass produce nano HMX/TNT energetic particles for significantly reduced mechanical sensitivity. Journal of Nanoscience and Nanotechnology 19 (9):5783–89. doi:10.1166/jnn.2019.16526.
  • Lynch, J. C., J. M. Brannon, and J. J. Delfino. 2002. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Chemosphere. 47:725–34. doi:10.1016/S0045-6535(02)00035-8.
  • Meng, L., Z. Lu, X. Wei, X. Xue, Q. Zeng, G. Fan, et al. Two-sided effects of strong hydrogen bonding on the stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). 2016:2258–67. 1 0.1 039/c5ce02089a.
  • Muravyev, N. V., K. A. Monogarov, A. F. Asachenko, M. S. Nechaev, I. V. Ananyev, I. V. Fomenkov, et al. 2017. Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Physical Chemistry Chemical Physics : PCCP 19 (1):436–49. doi:10.1039/c6cp06498a.
  • Niu, H., S. Chen, Q. Shu, L. Li, and S. Jin. 2017. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5ʹ-bistetrazole-1,1ʹ-diolate based polymer bonded explosive. Journal of Hazardous Materials 338:208–17. doi:10.1016/j.jhazmat.2017.05.040.
  • Niu, H., S. Chen, S. Jin, L. Li, B. Jing, Z. Jiang, et al. 2016a. Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate. Journal of Thermal Analysis and Calorimetry 126 (2):473–80. doi:10.1007/s10973-016-5571-y.
  • Niu, H., S. Chen, S. Jin, Q. Shu, L. Li, and F. Shang. 2016b. Dissolution properties of Dihydroxylammonium 5,5ʹ-Bistetrazole-1,1ʹ-diolate and Disodium 5,5ʹ-Bistetrazole-1,1ʹ-diolate in water. Journal of Energetic Materials 34:416–25. doi:10.1080/07370652.2015.1114048.
  • Ozawa, T., and A. New. 1965. Method of analyzing thermogravimetric data. B Chemical Society of Japan 38 (11):1881–86. doi:10.1246/bcsj.38.1881.
  • Ravi, P., D. M. Badgujar, G. M. Gore, S. P. Tewari, and A. K. Sikder. 2011. Review on melt cast explosives. Propellants, Explosives, Pyrotechnics 36 (5):393–403. doi:10.1002/prep.201100047.
  • Shang, Y., W. Yang, Y. Xu, S. Pan, H. Wang, and X. Cao. 2019. Preparation of few-layered WS2 and its thermal catalysis for dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate. Journal of Nanomaterials 2019. doi:10.1155/2019/7458645.
  • Sinditskii, V. P., S. A. Filatov, V. I. Kolesov, K. O. Kapranov, A. F. Asachenko, M. S. Nechaev, et al. 2015. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochimica acta 614:85–92. doi:10.1016/j.tca.2015.06.019.
  • Stoltz, C. A., B. P. Mason, and J. Hooper. 2010. Neutron scattering study of internal void structure in RDX. Journal of Applied Physics 107. doi:10.1063/1.3369564.
  • Sun, D., and S. V. Garimella. 2013. Numerical and experimental investigation of the melt casting of explosives. Propellants, Explosives, Pyrotechnics 62:42–44. doi:10.7690/bgzdh.2013.09.012.
  • Wang, J., S. Chen, Q. Yao, S. Jin, S. Zhao, Z. Yu, et al. 2017. Preparation, characterization, thermal evaluation and sensitivities of TKX-50/GO composite. Propellants, Explosives, Pyrotechnics 42 (9):1104–10. doi:10.1002/prep.201700080.
  • Wang, J., S. Chen, S. Jin, R. Shi, Z. Yu, Q. Su, et al. 2018. The primary decomposition product of TKX-50 under adiabatic condition and its thermal decomposition. Journal of Thermal Analysis and Calorimetry 134 (3):2049–55. doi:10.1007/s10973-018-7820-8.
  • Xing, X., S. Zhao, X. Wang, W. Zhang, X. Diao, W. Fang, et al. 2019. The detonation properties research on TKX-50 in high explosives. Propellants, Explosives, Pyrotechnics 44 (4):408–12. doi:10.1002/prep.201800299.
  • Xiong, S., S. Chen, and S. Jin. 2017. Molecular dynamic simulations on TKX-50/RDX cocrystal. Journal of Molecular Graphics & Modelling 74:171–76. doi:10.1016/j.jmgm.2017.03.006.
  • Xiong, S., S. Chen, S. Jin, Z. Zhang, Y. Zhang, and L. Li. 2017. Molecular dynamic simulations on TKX-50/HMX cocrystal. RSC Advances 7 (11):6795–99. doi:10.1039/c6ra26146a.
  • Xiong, S. L., C. S. Sen, L. J. Li, S. H. Jin, and J. L. Li. 2016. Purity analysis method of dihydroxylammonium 5,5ʹ-bistetrazole-1,1ʹ-diolate (TKX-50). Journal of Energetic Materials 34 (3):279–87. doi:10.1080/07370652.2015.1061618.
  • Yu, C., L. Yang, H. Chen, et al. 2020. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations. Computational Materials Science 172:109287. doi:10.1016/j.commatsci.2019.109287.
  • Yu, Y., S. Chen, T. Li, S. Jin, G. Zhang, M. Chen, et al. 2017. Study on a novel high energetic and insensitive munitions formulation: TKX-50 based melt cast high explosive. RSC Advances 7 (50):31485–92. doi:10.1039/c7ra05182d.
  • Yu, Y., S. Chen, X. Li, J. Zhu, H. Liang, X. Zhang, et al. 2016. Molecular dynamics simulations for 5,5′-bistetrazole-1,1′-diolate (TKX-50) and its PBXs. RSC Advances 6 (24):20034–41. doi:10.1039/c5ra27912g.
  • Zhang, J., F. Zhao, Y. Yang, Q. Yan, M. Zhang, and W. Ma. 2020a. Enhanced catalytic performance on the thermal decomposition of TKX-50 by Fe3O4 nanoparticles highly dispersed on rGO. Journal of Thermal Analysis and Calorimetry 140 (4):1759–67. doi:10.1007/s10973-019-08891-5.
  • Zhang, M., F. Zhao, Y. Yang, H. Li, H. Gao, E. Yao, et al. 2020b. Synthesis, characterization and catalytic behavior of MFe2O4 (M=Ni, Zn and Co) nanoparticles on the thermal decomposition of TKX-50. Journal of Thermal Analysis and Calorimetry 141 (4):1413–23. doi:10.1007/s10973-019-09102-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.