233
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Mordenite zeolite for scavenging nitroxide radicals and its effect on the thermal decomposition of nitrocellulose

, ORCID Icon, , ORCID Icon, ORCID Icon, & show all

References

  • Badgujar, D., M. Talawar, S. Asthana, and P. Mahulikar. 2008. Advances in science and technology of modern energetic materials: An overview. Journal of Hazardous Materials 151 (2–3):289–305. doi:10.1016/j.jhazmat.2007.10.039.
  • Barrie, P. J. 2012. The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. Physical Chemistry Chemical Physics 14 (1):327–36. doi:10.1039/C1CP22667C.
  • Brill, T., and P. Gongwer. 1997. Thermal decomposition of energetic materials 69. Analysis of the kinetics of nitrocellulose at 50 C–500 C. Propellants, Explosives, Pyrotechnics 22 (1):38–44. doi:10.1002/prep.19970220109.
  • Chai, H., Q. Duan, L. Jiang, L. Gong, H. Chen, and J. Sun. 2019. Theoretical and experimental study on the effect of nitrogen content on the thermal characteristics of nitrocellulose under low heating rates. Cellulose 26 (2):763–76. doi:10.1007/s10570-018-2100-0.
  • Chai, Z., L. Luo, B. Jin, Y. Zhao, L. Xiao, G. Li, … R. Peng. 2020. Fullerene stabilizer 4, 11, 15, 30-tetraarylamino fullerenoarylaziridine: Regioselective synthesis, crystallographic characterization derivatives, and potential application as propellant stabilizer. ACS Applied Energy Materials 3 (3):3005–14.
  • Chelouche, S., D. Trache, A. F. Tarchoun, A. Abdelaziz, K. Khimeche, and A. Mezroua. 2019a. Organic eutectic mixture as efficient stabilizer for nitrocellulose: Kinetic modeling and stability assessment. Thermochimica acta 673:78–91. doi:10.1016/j.tca.2019.01.015.
  • Chelouche, S., D. Trache, A. F. Tarchoun, and K. Khimeche. 2019a. Effect of organic eutectic on nitrocellulose stability during artificial aging. Journal of Energetic Materials 37(4): 387–406.
  • Chelouche, S., D. Trache, A. F. Tarchoun, and K. Khimeche. 2019b. Effect of organic eutectic on nitrocellulose stability during artificial aging. Journal of Energetic Materials 37 (4):387–406. doi:10.1080/07370652.2019.1621407.
  • Chelouche, S., D. Trache, A. F. Tarchoun, K. Khimeche, and A. Mezroua. 2019b. Compatibility of nitrocellulose with aniline-based compounds and their eutectic mixtures. Journal of Thermal Analysis and Calorimetry 141(2): 941–955.
  • Chelouche, S., D. Trache, C. M. Neves, S. P. Pinho, K. Khimeche, and M. Benziane. 2018. Solid+ liquid equilibria and molecular structure studies of binary mixtures for nitrate ester’s stabilizers: Measurement and modeling. Thermochimica Acta 666:197–207. doi:10.1016/j.tca.2018.07.002.
  • Chelouche, S., D. Trache, I. Maamache, A. F. Tarchoun, K. Khimeche, and A. Mezroua. 2020. A new experimental way for the monitoring of the real/equivalent in-service-time of double base rocket propellant by coupling VST and PCA. Defence Technology 17(2): 440–449 .
  • Chen, Z., Q. Chai, S. Liao, X. Chen, Y. He, Y. Li, … B. Li. 2012. Nonisothermal kinetic study: IV. Comparative methods to evaluate E a for thermal decomposition of KZn2 (PO4)(HPO4) synthesized by a simple route. Industrial & Engineering Chemistry Research 51 (26):8985–91. doi:10.1021/ie300774x.
  • Cherif, M. F., D. Trache, F. Benaliouche, A. F. Tarchoun, S. Chelouche, and A. Mezroua. 2020b. Organosolv lignins as new stabilizers for cellulose nitrate: Thermal behavior and stability assessment. International Journal of Biological Macromolecules 164:794–807. doi:10.1016/j.ijbiomac.2020.07.024.
  • Cherif, M. F., D. Trache, F. Benaliouche, S. Chelouche, A. F. Tarchoun, and A. Mezroua. 2020a. Effect of Kraft lignins on the stability and thermal decomposition kinetics of nitrocellulose. Thermochimica Acta 692:178732. doi:10.1016/j.tca.2020.178732.
  • Chovancová, M., and S. Zeman. 2007. Study of initiation reactivity of some plastic explosives by vacuum stability test and non-isothermal differential thermal analysis. Thermochimica Acta 460 (1–2):67–76. doi:10.1016/j.tca.2007.05.018.
  • Cieślak, K., K. Gańczyk-Specjalska, K. Drożdżewska-Szymańska, and M. Uszyński. 2020. Effect of stabilizers and nitrogen content on thermal properties of nitrocellulose granules. Journal of Thermal Analysis and Calorimetry 143(5): 3459–3470.
  • Dejeaifve, A., A. Fantin, L. Monseur, and R. Dobson. 2018. Making progress towards «Green» propellants. Propellants, Explosives, Pyrotechnics 43 (8):831–37. doi:10.1002/prep.201800026.
  • Dejeaifve, A., and R. Dobson 2019. Tocopherol stabilisers for nitrocellulose-based propellants: Google Patents.
  • Druet, L., and M. Asselin. 1988. A review of stability test methods for gun and mortar propellants, I: The chemistry of propellant ageing. Journal of Energetic Materials 6 (1–2):27–43. doi:10.1080/07370658808017235.
  • Gutierrez, L. B., E. E. Miró, and M. A. Ulla. 2007. Effect of the location of cobalt species on NO adsorption and NOx-SCR over Co–mordenite. Applied Catalysis. A, General 321 (1):7–16. doi:10.1016/j.apcata.2006.12.022.
  • Larkin, P. 2017. Infrared and Raman spectroscopy: Principles and spectral interpretation. Amsterdam: Elsevier.
  • Li, G., B. Jin, Z. Chai, L. Liao, S. Chu, and R. Peng. 2020. Synthesis and stabilization mechanism of novel stabilizers for fullerene-malonamide derivatives in nitrocellulose-based propellants. Polymer Testing 106493. doi:10.1016/j.polymertesting.2020.106493.
  • Liavitskaya, T., N. Guigo, N. Sbirrazzuoli, and S. Vyazovkin. 2017. Further insights into the kinetics of thermal decomposition during continuous cooling. Physical Chemistry Chemical Physics 19 (29):18836–44. doi:10.1039/C7CP00573C.
  • Lin, C.-P., Y.-M. Chang, J. P. Gupta, and C.-M. Shu. 2010. Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Safety and Environmental Protection 88 (6):413–19. doi:10.1016/j.psep.2010.07.004.
  • Liqing, L., and C. Donghua. 2004. Application of iso-temperature method of multiple rate to kinetic analysis. Journal of Thermal Analysis and Calorimetry 78 (1):283–93. doi:10.1023/B:JTAN.0000042175.27569.ee.
  • Liu, J. 2019. Nitrate Esters of Lignin and Rosin Acid Nitrate Esters Chemistry and Technology, 621–31. Singapore: Springer.
  • Lu, K.-T., J.-S. Li, and T.-F. Yeh. 2014. The study of thermal stability for the single base propellant via the accelerated aging process. J. Chung Cheng Inst Tech 43:69–78.
  • Ma, S., G. Song, and N. Feng. 2012. Preparation and characterization of self-emulsified waterborne nitrocellulose. Carbohydrate Polymers 89 (1):36–40. doi:10.1016/j.carbpol.2012.02.029.
  • Myburgh, A. 2006. Standardization on stanag test methods for ease of compatibility and thermal studies. Journal of Thermal Analysis and Calorimetry 85 (1):135–39. doi:10.1007/s10973-005-7357-5.
  • Pourmortazavi, S., S. Hosseini, M. Rahimi-Nasrabadi, S. Hajimirsadeghi, and H. Momenian. 2009. Effect of nitrate content on thermal decomposition of nitrocellulose. Journal of Hazardous Materials 162 (2–3):1141–44. doi:10.1016/j.jhazmat.2008.05.161.
  • Rodrigues, R. L. B., P. A. Gomes Buitrago, N. L. Nakano, F. C. Peixoto, M. F. Lemos, T. C. C. França, and L. G. Mendonça Filho. 2021. Can green nitrocellulose-based propellants be made through the replacement of diphenylamine by the natural product curcumin? Journal of Energetic Materials 1–24. doi:10.1080/07370652.2020.1859646.
  • Rodrigues, R. L., J. Nichele, T. C. Franca, and L. G. Mendonca Filho. 2018. Prediction of toxicity of the usual stabilizers in nitrocellulose based propellants and their main degradation products. Quimica Nova 41 (8):867–73.
  • Sbirrazzuoli, N. 2013. Determination of pre-exponential factors and of the mathematical functions f (α) or G (α) that describe the reaction mechanism in a model-free way. Thermochimica Acta 564:59–69.
  • Shehata, A., and M. Hassan. 2002. Poly N-(4-chlorophenyl), poly N-(4-methylphenyl) acrylamides and the copolymer of their monomers as stabilizers for nitrocellulose. Polymer Degradation and Stability 77 (3):355–70. doi:10.1016/S0141-3910(02)00044-7.
  • Shehata, A., M. Hassan, and M. Nour. 2003. Effect of new poly 2-acryloyl-N, N′-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N′-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. Journal of Hazardous Materials 102 (2–3):121–36. doi:10.1016/S0304-3894(03)00138-9.
  • Sovizi, M., S. Hajimirsadeghi, and B. Naderizadeh. 2009. Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials 168 (2–3):1134–39. doi:10.1016/j.jhazmat.2009.02.146.
  • Sun, Y., S. Ni, and X.-M. Pan. 2019. Theoretical study on the mechanisms of the decomposition of nitrate esters and the stabilization of aromatic amines. Journal of Molecular Modeling 25 (12):346. doi:10.1007/s00894-019-4245-7.
  • Sun, Z.-D., X.-L. Fu, H.-J. Yu, X.-Z. Fan, and X.-H. Ju. 2017. Theoretical study on stabilization mechanisms of nitrate esters using aromatic amines as stabilizers. Journal of Hazardous Materials 339:401–08. doi:10.1016/j.jhazmat.2017.06.025.
  • Tarchoun, A. F., D. Trache, T. M. Klapötke, S. Chelouche, M. Derradji, W. Bessa, and A. Mezroua. 2019. A promising energetic polymer from posidonia oceanica brown algae: Synthesis, characterization, and kinetic modeling. Macromolecular Chemistry and Physics. doi:10.1002/macp.201900358.
  • Trache, D., A. Abdelaziz, and B. Siouani. 2017. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. Journal of Thermal Analysis and Calorimetry 128 (1):335–48. doi:10.1007/s10973-016-5962-0.
  • Trache, D., and A. F. Tarchoun. 2018. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: A state-of-the-art review. Journal of Materials Science 53 (1):100–23. doi:10.1007/s10853-017-1474-y.
  • Trache, D., and A. F. Tarchoun. 2019. Analytical methods for stability assessment of nitrate esters-based propellants. Critical Reviews in Analytical Chemistry 49 (5):415–38. doi:10.1080/10408347.2018.1540921.
  • Trache, D., A. F. Tarchoun, S. Chelouche, and K. Khimeche. 2019. New insights on the compatibility of nitrocellulose with aniline‐based compounds. Propellants, Explosives, Pyrotechnics 44 (8):970–79. doi:10.1002/prep.201800269.
  • Trache, D., F. Maggi, I. Palmucci, and L. T. DeLuca. 2018. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. Journal of Thermal Analysis and Calorimetry 132 (3):1601–15. doi:10.1007/s10973-018-7160-8.
  • Trache, D., K. Khimeche, A. Mezroua, and M. Benziane. 2016. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry 124 (3):1485–96. doi:10.1007/s10973-016-5293-1.
  • Trache, D. 2016. Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels.” Carbohydrate Polymers 151:535–37. doi:10.1016/j.carbpol.2016.05.106.
  • Vogelsanger, B. 2004. Chemical stability, compatibility and shelf life of explosives. CHIMIA International Journal for Chemistry 58 (6):401–08. doi:10.2533/000942904777677740.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta 520 (1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Vyazovkin, S., C. Schick, S. P. Verevkin, F. Heym, R. Androsch, M. Hunkel, …, and N. Koga. Handbook of Thermal Analysis and Calorimetry, M. E. Brown, and P. K. Gallagher, 2018.503.
  • Vyazovkin, S. 2015. Some basics en route to isoconversional methodology. In Isoconversional Kinetics of Thermally Stimulated Processes, 1–25 https://doi.org/10.1007/978-3-319-14175-6_1. Springer, Cham.
  • Vyazovkin, S. 2018. Modern isoconversional kinetics: From misconceptions to advances. In Handbook of Thermal Analysis and Calorimetry, Vol. 6, 131–72. Elsevier Science BV.
  • Wang, Z.-M., T. Arai, and M. Kumagai. 1999. The separate removal of trace 14CO2 and moist NOx from off-gases by adsorption on H-type mordenite. Adsorption Science & Technology 17 (4):255–68. doi:10.1177/026361749901700403.
  • Wilker, S., G. Heeb, B. Vogelsanger, J. Petržílek, and J. Skladal. 2007. Triphenylamine–a ‘New’stabilizer for nitrocellulose based propellants–part I: Chemical stability studies. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 32 (2):135–48. doi:10.1002/prep.200700014.
  • Zayed, M., S. E. El-Begawy, and H. E. Hassan. 2012. Enhancement of stabilizing properties of double-base propellants using nano-scale inorganic compounds. Journal of Hazardous Materials 227:274–79. doi:10.1016/j.jhazmat.2012.05.050.
  • Zayed, M., S. E. El-Begawy, and H. E. Hassan. 2017. Mechanism study of stabilization of double-base propellants by using zeolite stabilizers (nano-and micro-clinoptilolite). Arabian Journal of Chemistry 10 (4):573–81. doi:10.1016/j.arabjc.2013.08.021.
  • Zeman, S., A. Elbeih, and Q.-L. Yan. 2013. Notes on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in the C4 matrix. Journal of Thermal Analysis and Calorimetry 112 (3):1433–37. doi:10.1007/s10973-012-2710-y.
  • Zhao, Y., B. Jin, R. Peng, L. Ding, and T. Zheng. 2020. Novel fullerene-based stabilizer for scavenging nitroxide radicals and its behavior during thermal decomposition of nitrocellulose. Journal of Hazardous Materials 391:121857. doi:10.1016/j.jhazmat.2019.121857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.