510
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Application of microfluidic technology on preparation of nano LLM-105

, , , , &

References

  • Amreen, K., and S. Goel. 2021. Review—Miniaturized and microfluidic devices for automated nanoparticle synthesis. ECS Journal of Solid State Science and Technology 10 (1):17002. doi:10.1149/2162-8777/abdb19.
  • Balzer, J., J. Field, M. Gifford, W. Proud, and S. Walley. 2002. High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX. Combust Flame 130 (4):298–306. doi:10.1016/S0010-2180(02)00373-5.
  • Boken, J., S. Soni, and D. Kumar. 2016. Microfluidic synthesis of nanoparticles and their biosensing applications. Critical Reviews in Analytical Chemistry 46 (6):538–61. doi:10.1080/10408347.2016.1169912.
  • Bolton, O., and A. Matzger. 2011. Improved stability and smart-material functionality realized in an energetic cocrystal. Angewandte Chemie International Edition 50 (38):8960–63. doi:10.1002/anie.201104164.
  • Bu, R., X. Zhou, Q. Huang, Y. Yu, and H. Li. 2017. Measurement, correlation and thermodynamics of solubility of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) in eight solvents. Propellants, Explosives, Pyrotechnics 42:1347–51. doi:10.1002/prep.201700123.
  • Chen, T., B. Gou, G. Hao, H. Gao, L. Xiao, X. Ke, S. Guo, and W. Jiang. 2019. Preparation, characterization of RDX/GAP nanocomposites, and study on the thermal decomposition behavior. Journal of Energetic Materials 37 (1):80–89. doi:10.1080/07370652.2018.1539786.
  • Delville, M., P. Nieuwland, P. Janssen, K. Koch, J. van Hest, and F. Rutjes. 2011. Continuous flow azide formation: Optimization and scale-up. Chemical Engineering Journal 167 (2–3):556–59. doi:10.1016/j.cej.2010.08.087.
  • Deng, P., Y. Liu, P. Luo, J. Wang, Y. Liu, D. Wang, and Y. He. 2017. Two-steps synthesis of sandwich-like graphene oxide/LLM-105 nanoenergetic composites using functionalized graphene. Materials Letters 194:156–59. doi:10.1016/j.matlet.2017.02.038.
  • Han, R., J. Chen, F. Zhang, Y. Wang, L. Zhang, F. Lu, H. Wang, and E. Chu. 2021. Fabrication of microspherical hexanitrostilbene (hns) with droplet microfluidic technology. Powder Technology 379:184–90. doi:10.1016/j.powtec.2020.10.056.
  • Huang, C., J. Liu, L. Ding, D. Wang, Z. Yang, and F. Nie. 2017. Facile fabrication of nanoparticles stacked 2,6‐diamino‐3,5‐dinitropyrazine‐1‐oxide (LLM‐105) sub‐microspheres via electrospray deposition. Propellants, Explosives, Pyrotechnics 43 (2):188–93. doi:10.1002/prep.201700154.
  • Ilhan-Ayisigi, E., B. Yaldiz, G. Bor, A. Yaghmur, and O. Yesil-Celiktas. 2021. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids and Surfaces. B, Biointerfaces 201:111633. doi:10.1016/j.colsurfb.2021.111633.
  • Kumar, R., and K. Ozoemena. 2015. Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Scientific Reports 5. doi:10.1038/srep17629.
  • Levis, M., F. Ontiveros, J. Juan, A. Kavanagh, and J. Zartman. 2019. Rapid fabrication of custom microfluidic devices for research and educational applications. Journal of Visualized Experiments (153). doi:10.3791/60307.
  • Liu, B., C. An, X. Geng, L. Yang, S. Xu, B. Ye, R. Xu, and J. Wang. 2019. LLM-105 nanoparticles prepared via green ball milling and their thermodynamics and kinetics investigation. Journal of Thermal Analysis and Calorimetry 135 (6):3303–09. doi:10.1007/s10973-019-08079-x.
  • Luo, T., Y. Wang, H. Huang, F. Shang, and X. Song. 2019. An electrospun preparation of the NC/GAP/Nano-LLM-105 nanofiber and its properties. Nanomaterials 9 (6):854. doi:10.3390/nano9060854.
  • Ma, Z., A. Pang, W. Li, Y. Qi, and L. Zhang. 2021. Preparation and characterization of ultra-fine ammonium perchlorate crystals using a microfluidic system combined with ultrasonication. Chemical Engineering Journal 405:126516. doi:10.1016/j.cej.2020.126516.
  • Patel, V., and S. Bhattacharya. 2013. High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. 2013. ACS Applied Materials & Interfaces 5 (24):13364–74. doi:10.1021/am404308s.
  • Peres, J., C. Herrera, S. Baldochi, W. de Rossi, and A. Dos Santos Vianna. 2019. Analysis of a microreactor for synthesizing nanocrystals by computational fluid dynamics. The Canadian Journal of Chemical Engineering 97 (2):594–603. doi:10.1002/cjce.23356.
  • Radacsi, N., R. Bouma, E. Krabbendam-La Haye, J. ter Horst, A. Stankiewicz, and A. van der Heijden. 2013. On the reliability of sensitivity test methods for submicrometer-sized RDX and HMX particles. Propellants, Explosives, Pyrotechnics 38 (6):761–69. doi:10.1002/prep.201200189.
  • Su, Z., X. Han, and Q. Liu. 2020. Research on microfluidic chip design and droplet related technology. Journal of physics. Conference series 1520: 12003.
  • Tarver, C., P. Urtiew, and T. Tran. 2005. Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. Journal of Energetic Materials 23 (3):183–203. doi:10.1080/07370650591001853.
  • Wu, B., J. Zhou, Y. Guo, R. Zhu, D. Wang, C. An, and J. Wang. 2021. Preparation of hmx/tatb spherical composite explosive by droplet microfluidic technology. Defence Technology. doi:10.1016/j.dt.2021.11.004.
  • Wu, J., H. Xia, Y. Zhang, S. Zhao, P. Zhu, and Z. Wang. 2019. An efficient micromixer combining oscillatory flow and divergent circular chambers. Microsystem Technologies 25 (7):2741–50. doi:10.1007/s00542-018-4193-7.
  • Wu, Y., D. Wang, and Y. Li. 2016. Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials 59:938–96. doi:10.1007/s40843-016-5112-0.
  • Yan, F., P. Zhu, S. Zhao, J. Shi, Y. Mu, H. Xia, and R. Shen. 2022. Microfluidic strategy for coating and modification of polymer-bonded nano-hns explosives. Chemical Engineering Journal 428:131096. doi:10.1016/j.cej.2021.131096.
  • Zhang, J., P. Wu, Z. Yang, B. Gao, J. Zhang, P. Wang, F. Nie, and L. Liao. 2014. Preparation and properties of submicrometer-sized LLM-105 via spray-crystallization method. Propellants, Explosives, Pyrotechnics 39 (5):653–57. doi:10.1002/prep.201300174.
  • Zhang, S., L. Zhan, G. Zhu, Y. Teng, Y. Shan, J. Hou, and B. Li. 2021. Rapid preparation of size-tunable nano-TATB by microfluidics. Defence Technology. doi:10.1016/j.dt.2021.05.015.
  • Zhao, S., C. Chen, P. Zhu, H. Xia, J. Shi, F. Yan, and R. Shen. 2019. Passive micromixer platform for size- and shape-controllable preparation of ultrafine HNS. Industrial & Engineering Chemistry Research 58 (36):16709–18. doi:10.1021/acs.iecr.9b02396.
  • Zhao, S., J. Wu, P. Zhu, H. Xia, C. Cong, and R. Shen. 2018. A microfluidic platform for preparation and screening of narrow size-distributed nanoscale explosives and super-mixed composite explosives. Industrial & Engineering Chemistry Research 57 (39):13191–204. doi:10.1021/acs.iecr.8b03434.
  • Zhou, J., B. Wu, M. Wang, S. Liu, Z. Xie, C. An, and J. Wang. 2021. Accurate and efficient droplet microfluidic strategy for controlling the morphology of energetic microspheres. Journal of Energetic Materials 1–18. doi:10.1080/07370652.2021.1980152.
  • Zhu, Q., C. Xiao, S. Li, and G. Luo. 2016. Bioinspired fabrication of insensitive HMX particles with polydopamine coating. Propellants, Explosives, Pyrotechnics 41 (6):1092–97. doi:10.1002/prep.201600021.
  • Zuckerman, N., M. Shusteff, P. Pagoria, and A. Gash. 2015. Microreactor flow synthesis of the secondary high explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). Journal of Flow Chemistry 5 (3):178–82. doi:10.1556/1846.2015.00016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.