231
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, characterization, and thermal decomposition kinetics of deuterated 1,3,5-triamino-2,4,6-trinitrobenzene

ORCID Icon, , , , , & show all

References

  • Agrawal, J. P. 2005. Some new high energy materials and their formulations for specialized applications. Propellants Explosives Pyrotechnics 30 (5):316–28. doi:10.1002/prep.200500021.
  • Anniyappan, M, Talawar, M. B., Sinha, R. K., and Murthy, K. P. S. 2020. Review on advanced energetic materials for insensitive munition formulations. Combustion Explosion and Shock Waves 56 (5):495–519. doi:10.1134/s0010508220050019.
  • Bellamy, A. J., S. J. Ward, and P. Golding. 2002. A New synthetic route to 1, 3, 5‐triamino‐2, 4, 6‐trinitrobenzene (TATB). Propellants, Explosives, Pyrotechnics 27 (2):49–58. doi:10.1002/1521-4087(200204)27:2<49::AID-PREP49>3.0.CO;2-4.
  • Borman, S. 1994. ADVANCED ENERGETIC MATERIALS EMERGE FOR MILITARY AND SPACE APPLICATIONS. Chemical & Engineering News 72 (3):18–22. doi:10.1021/cen-v072n003.p018.
  • Bulusu, S., and J. R. Autera. 1983. Initiation mechanism of TNT: Deuterium isotope effect as an experimental probe. Journal of Energetic Materials 1 (2):133–40. doi:10.1080/07370658308010629.
  • Chang, D. 2018. The impact of isotopic substitution on the crystallization and melting behaviors of selectively deuterated poly (ɛ-caprolactone) s. Bulletin of the American Physical Society, Los Angeles, California.
  • Dobratz, B. M. 1995. The insensitive high explosive triaminotrinitrobenzene (TATB): Development and characterization, 1888 to 1994. LA-13014-H ON: DE95016705 ,Los Alamos National Lab.(LANL), Los Alamos, NM, United States.
  • Dressen, S. 2006. Pilot plant synthesis of triaminotrinitrobenzene (TATB). In Insensitive Munitions & Energetic Materials Technology Symposium (NDIA), Bristol, UK, 24–28.
  • Estes, Z. 1977. Chlorine free synthesis of TATB. Mason and Hanger-Silas Mason Co., Inc., Amarillo, Tex.(USA).
  • Fang, Z. Q., S. K. Li, and J. P. Liu. 2021. Probing the effects of deuteration on the structure and thermal behavior of TNT-d (5). Propellants Explosives Pyrotechnics 46 (10):1581–88. doi:10.1002/prep.202100103.
  • Friedman, H. L. 1964. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic .Journal of polymer science part C: Polymer symposia 6 (1):183–95. doi:10.1002/polc.5070060121.
  • Guiyu, Z., Q. Xiufang, and Z. Xi. 2021. Advances in disruptive technologies of ultrahigh-energetic materials. Journal of Physics: Conference Series 1721 (1):012009.
  • Hoffman, D. M. 2001. Dynamic mechanical signatures of aged LX-17-1 plastic bonded explosive. Journal of Energetic Materials 19 (2–3):163–93. doi:10.1080/07370650108216125.
  • Hu, R. Z. 2003. Estimation of the critical rate of temperature increase of thermal explosion of nitrocellulose using non-isothermal DSC. Chinese Journal of Polymer Science 21 (3):285–89.
  • Incheon, S. K., F. N. G, H. Huang, L. Zhao, and W. Pang. 2006. Preparation and characterization of nano‐TATB explosive. Propellants, Explosives, Pyrotechnics 31 (5):390–94. doi:10.1002/prep.200600053.
  • Irikura, K. K. 2009. Experimental vibrational zero-point energies: diatomic molecules (vol 36, pg 389, 2007). Journal of Physical and Chemical Reference Data 38 (3):749–749. doi:10.1063/1.3167794.
  • Jackson, C. L., and J. F. Wing. 1887. On tribromtrinitrobenzol. Proceedings of the American Academy of Arts and Sciences 23 (1): 138–48. doi:10.2307/20021509.
  • Koroglu, B. 2021. Experimental Investigation of the thermal decomposition pathways and kinetics of TATB by isotopic substitution. Propellants Explosives Pyrotechnics 46 (9):1352–66. doi:10.1002/prep.202100082.
  • Luscher, D. J. 2017. Using neutron diffraction to investigate texture evolution during consolidation of deuterated triaminotrinitrobenzene (d-TATB) explosive powder. Crystals 7 (5):138. doi:10.3390/cryst7050138.
  • Muravyev, N. V., and V. G. Kiselev. 2017. Cheaper, faster, or better: are simple estimations of safety parameters of hazardous materials reliable? Comments on” thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant” by Zhao et al. (2010). Journal of Hazardous Materials 334:267–70. doi:10.1016/j.jhazmat.2017.03.063.
  • Muravyev, N. V. 2017. Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50). Physical Chemistry Chemical Physics 19 (1):436–49. doi:10.1039/C6CP06498A.
  • Muravyev, N. V., A. N. Pivkina, and N. Koga. 2019. Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules 24 (12):2298. doi:10.3390/molecules24122298.
  • Nandi, A. K. 2007. Synthesis and characterization of ultrafine TATB. Journal of Energetic Materials 25 (4):213–31. doi:10.1080/07370650701567066.
  • Nandi, A. K. 2014. Assay of the thermally stable, insensitive, high explosive 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB). Central European Journal of Energetic Materials 11 (2):295–305.
  • Nouguez, B., B. Mahe, and P. O. Vignaud. 2009. Cast PBX related technologies for IM shells and warheads. Science and Technology of Energetic Materials 70 (5–6):135–39.
  • Rogers, R. N., J. L. Janney, and M. H. Ebinger. 1982. KINETIC-ISOTOPE EFFECTS IN THERMAL EXPLOSIONS. Thermochimica Acta 59 (3):287–98. doi:10.1016/0040-6031(82)87151-7.
  • Scheiner, S., and M. Čuma. 1996. Relative stability of hydrogen and deuterium bonds. Journal of the American Chemical Society 118 (6):1511–21. doi:10.1021/ja9530376.
  • Schmidt, R. D., A. R. Mitchell, and P. F. Pagoria. 1998. New synthesis of TATB process development studies. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).
  • Singh, A. 2018. Physicochemical properties and kinetic analysis for some fluoropolymers by differential scanning calorimetry. Polymer Bulletin (Berlin) 75 (6):2315–38. doi:10.1007/s00289-017-2153-5.
  • Talawar, M. 2006. Method for preparation of fine TATB (2–5 μm) and its evaluation in plastic bonded explosive (PBX) formulations. Journal of Hazardous Materials 137 (3):1848–52. doi:10.1016/j.jhazmat.2006.05.031.
  • Wiberg, K. B. 1955. THE DEUTERIUM ISOTOPE EFFECT. Chemical Reviews 55 (4):713–43. doi:10.1021/cr50004a004.
  • Willey, T. M., S. C. Depiero, and D. M. Hoffman. 2009. A comparison of new TATBs, FK-800 binder and LX17-like PBXs to legacy materials. 1st Korean International Symposium on High Energy Materials, Incheon, South Korea.
  • Yi, J.-H. 2010. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. Journal of Hazardous Materials 181 (1–3):432–39. doi:10.1016/j.jhazmat.2010.05.029.
  • Zeman, S. 1993. The thermoanalytical study of some aminoderivatives of 1, 3, 5-trinitrobenzene. Thermochimica Acta. 216157–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.