63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

VOF based model of numerical simulation for single aluminum droplet evaporation and combustion

, &

References

  • Badiola, C., R. J. Gill, and E. L. Dreizin. 2011. Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combustion and Flame 158 (10):2064–70. doi:10.1016/j.combustflame.2011.03.007
  • Banerjee, R. 2013. Numerical investigation of evaporation of a single ethanol/iso-octane droplet. Fuel 107:724–739
  • Beckstead, M. W., Y. Liang, and K. V. Pudduppakkam. 2005. Numerical simulation of single aluminum particle combustion. Combustion, Explosion, and Shock Waves 41 (6):622–38. doi:10.1007/s10573-005-0077-0
  • Braconnier, A., S. Gallier, F. Halter, and C. Chauveau. 2021. Aluminum combustion in CO2-CO-N2 mixtures. Proceedings of the Combustion Institute 38 (3):4355–63. doi:10.1016/j.proci.2020.06.028
  • Bucher, P., R. A. Yetter, F. L. Dryer, Hanson-Parr, D. M., Viceni, E. P. 1996. Flames structure measurement of single, isolated aluminum particles burning in air. Symposium (International) on Combustion, 1899–908 Campi Phlegraci, Italy: Elsevier
  • Chiang, C. H., M. S. Raju, and W. A. Sirignano. 1992. Numerical analysis of convecting, vaporizing fuel droplet with variable properties. International Journal of Heat and Mass Transfer 35 (5):1307–24. doi:10.1016/0017-9310(92)90186-V
  • Daıf, A., M. BOUAZIZ, X. CHESNEAU, and A. Ali Chérif. 1998. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the sirignano model. Experimental Thermal and Fluid Science 18 (4):282–90. doi:10.1016/S0894-1777(98)10035-3
  • Desjardin, P. E., J. D. Felske, and M. D. Carrara. 2005. Mechanistic model for aluminum particle ignition and combustion in air. Journal of Propulsion & Power 21 (3):478–85. doi:10.2514/1.5864
  • Dreizin, E. L. 1999. On the mechanism of asymmetric aluminum particle combustion. Combustion and Flame 117 (4):841–50. doi:10.1016/S0010-2180(98)00125-4
  • Feng, Y., Z. Xia, L. Huang, and L. Ma. 2018. Ignition and combustion of a single aluminum particle in hot gas flow. Combustion and Flame 196:35–44. doi:10.1016/j.combustflame.2018.05.010
  • Fu, X. C., Y. Chen, Yao, T. Y., Hou, W.H. 2005. Physical chemistry. Beijing: Higher Education
  • Geisler, R. 2002. A global view of the use of aluminum fuel in solid rocket motors. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 3748. Indianapolis, Indiana.
  • Glassman, I. 1963. Metal combustion processes. Princeton University, New Jersey: No. AFOSR-TN-59-1093.
  • Hirt, C. W., and B. D. Nichols. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1):201–25. doi:10.1016/0021-9991(81)90145-5
  • Houim, R., and K. K. K. 2008. MULTIPHASE SIMULATION of SINGLE ALUMINUM PARTICLE EVAPORATION and COMBUSTION in CONVECTIVE ENVIRONMENTS. International Journal of Energetic Materials and Chemical Propulsion 7 (6):453–74. doi:10.1615/IntJEnergeticMaterialsChemProp.v7.i6.10
  • Huang, Y., G. A. Risha, V. Yang, Yetter, R. A. 2005. Analysis of nano-aluminum particle dust cloud combustion in different oxidizer environments. The 43rd AIAA Aerospace Sciences Meeting and ExhibitReno, Nevada.
  • Huang, Y., G. A. Risha, V. Yang, and R. A. Yetter. 2009. Effect of particle size on combustion of aluminum particle dust in air. Combustion and Flame 156 (1):5–13. doi:10.1016/j.combustflame.2008.07.018
  • Jinlan, T. L P H S. 2013. Guti Huojian Fadongji Yuanli. Beijing: Nation Defense Industry Press.
  • Jin, Y., and B. D. Shaw. 2010. Computational modeling of n-heptane droplet combustion in air–diluent environments under reduced-gravity. International Journal of Heat and Mass Transfer 53 (25–26):5782–91. doi:10.1016/j.ijheatmasstransfer.2010.08.005
  • Law, C. K. 1973. A simplified theoretical model for the vapor-phase combustion of metal particles. Combustion Science and Technology 7 (5):197–212. doi:10.1080/00102207308952359
  • Lim, J. 2010:Burning and ignition characteristics of single aluminum and magnesium particle. AIAA Guidance, Navigation, and Control Conference, 6676, Toronto, Ontario, Canada.
  • Liu, J., Q. Chu, and D. Chen. 2021. On modeling the combustion of a single micron-sized aluminum particle with the effect of oxide cap. ACS Omega 6 (50):34263–75. doi:10.1021/acsomega.1c03502
  • Marion, M., C. Chauveau, and I. Gökalp. 1996. Studies on the ignition and burning of levitated aluminum particles. Combustion Science and Technology 115 (4–6):369–90. doi:10.1080/00102209608935537
  • Mcallister, S., J. Y. Chen, Fernandez-Pello, A. C. 2011. Droplet evaporation and combustion. Fundamentals of Combustion Processes. 155–75.
  • Merrill, K., and King. 1979. Modeling of single particle aluminum combustion in CO2N2 atmospheres. Symposium (International) on Combustion 17 (1):1317–28. doi:10.1016/S0082-0784(79)80124-1
  • Ni, Z., C. Hespel, K. Han, and F. Foucher. 2021. Numerical simulation of heat and mass transient behavior of single hexadecane droplet under forced convective conditions. International Journal of Heat and Mass Transfer 167:120736. doi:10.1016/j.ijheatmasstransfer.2020.120736
  • Renksizbulut, M., and M. C. Yuen. 1983. Experimental study of droplet evaporation in a high-temperature air stream. Journal of Heat Transfer 105 (2):384–88. doi:10.1115/1.3245590
  • Sarou-Kanian, V., F. Millot, and J. C. Rifflet. 2003. Surface tension and density of oxygen-free liquid aluminum at high temperature. International Journal of Thermophysics 24 (1):277–86. doi:10.1023/A:1022466319501
  • Saufi, A. E., A. Frassoldati, T. Faravelli, and A. Cuoci. 2019. DropletSMOKE++: A comprehensive multiphase CFD framework for the evaporation of multidimensional fuel droplets. International Journal of Heat and Mass Transfer 131:836–53. doi:10.1016/j.ijheatmasstransfer.2018.11.054
  • Saufi, A. E., A. Frassoldati, T. Faravelli, and A. Cuoci. 2021. Interface-resolved simulation of the evaporation and combustion of a fuel droplet suspended in normal gravity. Fuel 287:119413. doi:10.1016/j.fuel.2020.119413
  • Schrage, R. W. 1953. A theoretical study of interface mass transfer. USA: Columbia University Press.
  • Strotos, G., I. Malgarinos, N. Nikolopoulos, and M. Gavaises. 2016. Predicting the evaporation rate of stationary droplets with the VOF methodology for a wide range of ambient temperature conditions. International Journal of Thermal Sciences 109:253–62. doi:10.1016/j.ijthermalsci.2016.06.022
  • Tian, R. Y. 2017. Numerical simulation of combustion behavior of aluminum particle in composite solid propellants. Nanjing: Nanjing University of Technology. (in Chinese).
  • Wang, J., J. Luo, S. Huang, J. Xia, B. Yang, and Y. Wang. 2022. Numerical simulation of single aluminum droplet evaporation based on VOF method. Case Studies in Thermal Engineering 34:102008. doi:10.1016/j.csite.2022.102008
  • Wang, Z., B. Yuan, Y. Huang, J. Cao, Y. Wang, and X. Cheng. 2022. Progress in experimental investigations on evaporation characteristics of a fuel droplet. Fuel Processing Technology 231:107243. doi:10.1016/j.fuproc.2022.107243
  • Zeng, H., Y. Wakata, X. Chao, M. Li, and C. Sun. 2023. On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing. Journal of Colloid and Interface Science 648:736–44. doi:10.1016/j.jcis.2023.06.012
  • Zenin, A., G. Kusnezov, V. Kolesnikov Physics of alumimum particle combustion at zero-gravity[C]. 37th Aerospace Sciences Meeting and Exhibit, 1999: 696, Reno, NV, U.S.A.
  • Zhang, X. B., S. J. Xiang, X. L. Cao, Xuejun Z. 2011. Numerical simulation for combustion of droplet with volume of fluid formulation. CIESC Journal 62 (3):692–98.
  • Zhang, X., W. Zhang, and X. Zhang. 2012. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number. Journal of Zhejiang University Science A 13 (5):361–74. doi:10.1631/jzus.A1100338
  • Zhou, L. 2021. Studies on theory and modeling of droplet and spray combustion in China: A review. Acta Mechanica Sinica 37 (7):1031–40. doi:10.1007/s10409-021-01124-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.