Publication Cover
Drying Technology
An International Journal
Volume 33, 2015 - Issue 3
788
Views
72
CrossRef citations to date
0
Altmetric
Original Articles

Process-Based Drying Temperature and Humidity Integration Control Enhances Drying Kinetics of Apricot Halves

, , , , , & show all

REFERENCES

  • Food and Agriculture Organization. FaoStat Database. http://faostat.fao.org
  • Kucuk, H.; Midilli, A.; Kilic, A.; Dincer, I. A review on thin-layer drying-curve equations. Drying Technology 2014, 32, 757–773.
  • Garcia-Perez, J.V.; Carcel, J.A.; Simal, S.; Garcia-Alvarado, M.A.; Mulet, A. Ultrasonic intensification of grape stalk convective drying: kinetic and energy efficiency. Drying Technology 2013, 31, 942–950.
  • Ghandi, A.; Powell, I.B.; Chen, X.D.; Adhikari, B. The survival of lactococcus lactis in a convective-air-drying environment: The role of protectant solids, oxygen injury, and mechanism of protection. Drying Technology 2013, 31, 1661–1674.
  • Danielsson, S.; Rasmuson, A. The influence of drying medium, temperature, and time on the release of monoterpenes during convective drying of wood chips. Drying Technology 2002, 20, 1427–1444.
  • Arora, S.; Bharti, S.; Sehgal, V.K. Convective drying kinetics of red chillies. Drying Technology 2006, 24, 189–193.
  • Sacilik, K.; Elicin, A.K. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering 2006, 73, 281–289.
  • Kudra, T. Energy performance of convective dryers. Drying Technology 2012, 30, 1190–1198.
  • Abasi, S.; Minaei, S. Effect of drying temperature on mechanical properties of dried corn. Drying Technology 2014, 32, 774–780.
  • Lewicki, P.P.; Jakubczyk, E. Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering 2004, 64, 307–314.
  • Guo, L.M.; Zhang, Q.; Zhao, X.M.; Zou, S.P.; Liu, L. Study on the drying technology and drying characteristics of solar-dryer for high-quality dried apricot. Xinjiang Agricultural Sciences 2008, 45, 1102–1109.
  • Xiao, H.W.; Pang, C.L.; Wang, L.H.; Bai, J.W.; Yang, W.X.; Gao, Z.J. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering 2010, 105, 233–240.
  • Toğrul, I.T.; Pehlivan, D. Modeling of drying kinetics of single apricot. Journal of Food Engineering 2003, 58, 23–32.
  • Karabulut, I.; Topcu, A.; Duran, A.; Turan, S.; Ozturk, B. Effect of hot air drying and sun drying on color values and b-carotene content of apricot (Prunus armeniaca L.). LWT - Food Science and Technology 2007, 40, 753–758.
  • Bon, J.; Rosselló, C.; Femenia, A.; Eim, V.; Simal, S. Mathematical modeling of drying kinetics for apricots: Influence of the external resistance to mass transfer. Drying Technology 2007, 25, 1829–1835.
  • Xiao, H.W.; Zhang, S.X.; Bai, J.W.; Fang, X.M.; Zhang, Z.J.; Gao, Z.J. Air impingement drying characteristics of apricot. Transactions of the Chinese Society of Agricultural Engineers 2010, 26, 318–323.
  • Xiong, S.B.; Zhao, S.M. High temperature and high humidity drying of artificially formed rice. Food Science 2000, 21, 31–33.
  • Zhao, S.M.; Liu, Y.M.; Xiong, S.B.; Tan, R.C. Water diffusion properties of instant rice noodles under high temperature and high moisture drying condition. Journal of Huazhong Agricultural University 2003, 3, 285–288.
  • Jia, L.; Kong, J.X.; Liu, Y.H.; Wu, Y.; Xiong, S.B.; Zhao, S.M. Studies on high temperature and humidity drying of velvet bean. Transactions of the Chinese Society of Agricultural Engineers 2011, 36, 1–5.
  • Zhao, S.M.; Tan, R.C.; Liu, Y.M.; Xiong, S.B. Mathematical modeling of instant rice noodles during the high temperature and high moisture drying process. Food Science 2003, 24, 52–54.
  • Zhang, X.X. Edible fungi drying technology and equipment. Edible Fungi of China 1993, 12, 42–45.
  • Wang, W.; Chen, G.H.; Mujumdar, A.S. Physical interpretation of solids drying: An overview on mathematical modeling research. Drying Technology 2007, 25, 659–668.
  • Liu, X.S.; Qiu, Z.F.; Wang, L.H.; Cheng, Y.Y.; Qu, H.B.; Chen, Y. Mathematical modeling for thin layer vacuum belt drying of Panax notoginseng extract. Energy Conversion and Management 2009, 50, 928–932.
  • Vega-Galvez, A.; Ayala-Aponte, A.; Notte, E.; de la Fuente, L.; Lemus-Mondaca, R. Mathematical modeling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera. Drying Technology 2008, 26, 1610–1616.
  • Ghalavand, Y.; Rahimi, A.; Hatamipour, M.S. Experimental study and mathematical modeling of green pea drying in a spouted bed. Drying Technology 2012, 30, 128–137.
  • Corzo, O.; Bracho, N.; Pereira, A.; Vasquez, A. Weibull distribution for modeling air drying of coroba slices. LWT - Food Science and Technology 2008, 41, 2023–2028.
  • Manso, M.C.; Oliveira, F.A.R.; Oliveira, J.C.; Frias, J.M. Modeling ascorbic acid thermal degradation and browning in orange juice under aerobic conditions. International Journal of Food Science and Technology 2001, 36, 303–312.
  • Corradini, M.G.; Peleg, M. A model of non-isothermal degradation of nutrients, pigments and enzymes. Journal of the Science of Food and Agriculture 2004, 84, 217–226.
  • Miranda, G.; Berna, A.; Salazar, D.; Mulet, A. Sulphur dioxide evolution during dried apricot storage. LWT - Food Science and Technology 2009, 42, 531–533.
  • Bantle, M.; Kolsaker, K.; Eikevik, T.M. Modification of the Weibull distribution for modeling atmospheric freeze-drying of food. Drying Technology 2011, 29, 1161–1169.
  • Cunha, L.M.; Oliverira, F.A.R.; Aboim, A.P.; Frias, J.M.; Pinheiro-Torres, A. Stochastic approach to the modeling of water losses during osmotic dehydration and improved parameter estimation. International Journal of Food Science and Technology 2001, 36, 253–262.
  • Miranda, M.; Vega-Galvez, A.; Garcia, P.; Di Scala, K.; Shi, J.; Xue, S.; Uribe, E. Effect of temperature on structural properties of aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modeling drying process. Food and Bioproducts Processing 2010, 88, 138–144.
  • Bai, J.W.; Wang, J.L.; Xiao, H.W.; Ju, H.Y.; Liu, Y.H.; Gao, Z.J. Weibull distribution for modeling drying of grapes and its application. Transactions of the Chinese Society of Agricultural Engineers 2013, 29, 278–285.
  • Bantle, M.; Kolsaker, K.; Eikevik, T.M. Modification of the Weibull distribution for modeling atmospheric freeze-drying of food. Drying Technology 2011, 29, 1161–1169.
  • Association of Official Analytical Chemists. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, 1990.
  • Santos, P.H.S.; Silva, M.A. Kinetics of L-ascorbic acid degradation in pineapple drying under ethanolic atmosphere. Drying Technology 2009, 27, 947–954.
  • Goula, A.M.; Adamopoulos, K.G. Modeling the rehydration process of dried tomato. Drying Technology 2009, 27, 1078–1088.
  • Simal, S.; Femenia, A.; Garau, M.C.; Rosello, C. Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering 2005, 66, 323–328.
  • Vega, A.; Uribe, E.; Lemus, R.; Miranda, M. Hot-air drying characteristics of aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT-Food Science and Technology 2007, 40, 1698–1707.
  • Hacihafizoğlu, O.; Cihan, A.; Kahveci, K. Mathematical modeling of drying of thin layer rough rice. Food and Bioproducts Processing 2008, 86, 268–275.
  • Polat, K.; Kirmaci, V. A novel data preprocessing method for the modeling and prediction of freeze-drying behavior of apples: Multiple output-dependent data scaling (MODDS). Drying Technology 2012, 30, 185–196.
  • Pangavhane, D.R. Drying kinetic studies on single layer Thompson seedless grapes under controlled heated air conditions. Journal of Food Processing and Preservation 2000, 24, 335–352.
  • Lemus, R.A.; Perez, M.; Andres, A.; Roco, T.; Tello, C.M.; Vega, A. Kinetic study of dehydration and desorption isotherms of red alga Gracilaria. LWT - Food Science and Technology 2008, 41, 1592–1599.
  • Ertekin, C.; Yaldiz, O. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering 2004, 63, 349–359.
  • Wang, X.T.; Gao, Z.J.; Xiao, H.W.; Bai, J. Enhanced mass transfer of osmotic dehydration and changes in microstructure of pickled salted egg under pulsed pressure. Journal of Food Engineering 2013, 117, 141–150.
  • Bhattacharya, I.; Chakraborty, R.; Chowdhury, R. Intensification of freeze-drying rate of Bacillus subtilis MTCC 2396 using tungsten halogen radiation: Optimization of moisture content and alpha-amylase activity. Drying Technology 2014, 32, 801–812.
  • Vasic, M.; Grbavcic, Z.; Radojevic, Z. Analysis of moisture transfer during the drying of clay tiles with particular reference to an estimation of the time-dependent effective diffusivity. Drying Technology 2014, 32, 829–840.
  • Eim, V.S.; Urrea, D.; Rossello, C.; Garcia-Perez, J.V.; Femenia, A.; Simal, S. Optimization of the drying process of carrot (Daucus carota v. nantes) on the basis of quality criteria. Drying Technology 2013, 31, 951–962.
  • Luo, H.; Xia, W.S.; Xu, Y.S.; Jiang, Q.X. Diffusive model with variable effective diffusivity considering shrinkage for hot-air drying of lightly salted grass carp fillets. Drying Technology 2013, 31, 752–758.
  • Onuoha, L.N.; Aviara, N.A.; Abdulrahim, T.A.; Suleiman, A.T. Influence of cultivar on the predictive performance of a moisture transport model developed for parboiled paddy drying. Drying Technology 2013, 31, 494–506.
  • Seth, D.; Sarkar, A. A lumped parameter model for effective moisture diffusivity in air drying of foods. Food and Bioproducts Processing 2004, 82, 183–192.
  • Sutar, P.P.; Prasad, S. Modeling microwave vacuum drying kinetics and moisture diffusivity of carrot slices. Drying Technology 2007, 25, 1695–1702.
  • Celma, A.R.; Rojas, S.; Lopez-Rodriguez, F. Mathematical modeling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing 2008, 47, 1810–1818.
  • Wang, Y.B.; Wang, B.H. Weibull function and its applications in research of drying kinetics. Drying Technology and Equipment 2011, 9, 103–109.
  • Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I.S. Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology 2003, 217, 311–318.
  • Chin, S.K.; Law, C.L.; Supramaniam, C.V.; Cheng, P.G. Thin-layer drying characteristics and quality evaluation of air-dried Ganoderma tsugae Murrill. Drying Technology 2009, 27, 975–984.
  • Bai, J.W.; Gao, Z.J.; Xiao, H.W.; Wang, X.T.; Zhang, Q. Polyphenol oxidase inactivation and vitamin C degradation kinetics of Fuji apple quarters by high humidity air impingement blanching. International Journal of Food Science and Technology 2013, 48, 1135–1141.
  • Doymaz, I.; Kocayigit, F. Drying and rehydration behaviors of convection drying of green peas. Drying Technology 2011, 29, 1273–1282.
  • Xiao, H.W.; Yao, X.D.; Lin, H.; Yang, W.X.; Meng, J.S.; Gao, Z.J. Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. Journal of Food Process Engineering 2012, 35, 370–390.
  • Xiao, H.W.; Lin, H.; Yao, X.D.; Du, Z.L.; Lou, Z.; Gao, Z.J. Effects of different pretreatments on drying kinetics and quality of sweet potato bars undergoing air impingement drying. International Journal of Food Engineering 2009, 5(5), Article 5.
  • Chong, C.H.; Law, C.L.; Cloke, M.; Abdullah, L.C.; Daud, W.R.W. Drying models and quality analysis of sun-dried ciku. Drying Technology 2009, 27, 985–992.
  • Bai, J.W.; Sun, D.W.; Xiao, H.W.; Mujumdar, A.S.; Gao, Z.J. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science and Emerging Technologies 2013, 20, 230–237.
  • Xiao, H.W.; Law, C.; Sun, D.W.; Gao, Z.J. Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying. Drying Technology 2014, 32, 418–427.
  • Xiao, H.W.; Gao, Z.J.; Lin, H.; Yang, W.X. Air impingement drying characteristics and quality of carrot cubes. Journal of Food Process Engineering 2010, 33, 899–918.
  • Cunningham, S.E.; McMinn, W.A.M.; Magee, T.R.A.; Richardson, P.S. Modeling water absorption of pasta during soaking. Journal of Food Engineering 2007, 82, 600–607.
  • Tello-Ireland, C.; Lemus-Mondaca, R.; Vega-Galvez, A.; Lopez, J.; Di Scala, K. Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT - Food Science and Technology 2011, 44, 2112–2118.
  • García-Pascual, P.; Sanjuan, N.; Melis, R.; Mulet, A. Morchella esculenta (morel) rehydration process modeling. Journal of Food Engineering 2006, 72, 346–353.
  • Zogzas, N.P.; Maroulis, Z.B.; MarinosKouris, D. Moisture diffusivity data compilation in foodstuffs. Drying Technology 1996, 14, 2225–2253.
  • Troncoso, E.; Pedreschi, F. Modeling of textural changes during drying of potato slices. Journal of Food Engineering 2007, 82, 577–584.
  • Liu, X.G.; Zhou, T.Y.; Barbanti, D. Research of food non-enzymatic browning evaluation methodology. Food Science 1991, 27, 9–13.
  • Salas, C.; Moya, R. Kiln-Solar and air-drying behavior of lumber of Tectona grandis and Gmelina arborea from fast-grown plantations: Moisture content, wood color, and drying defects. Drying Technology 2014, 32, 301–310.
  • Xiao, H.W.; Bai, J.W.; Sun, D.W.; Gao, Z.J. The application of superheated steam impingement blanching (SSIB) in agricultural products processing—A review. Journal of Food Engineering 2014, 132, 39–47.
  • Dewanto, V.; Wu, X.Z.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 2002, 50, 3010–3014.
  • Xiao, H.W.; Gao, Z.J. The application of scanning electron microscope (SEM) to study the microstructure changes in the field of agricultural products drying. In The Scanning Electron Microscope; Kazmiruk, V. Ed.; INTECH Press: Rijeka, Croatia, 2012; 213–226.
  • Wang, Q.H.; Li, Z.X.; Yang, J.S.; Xie, L.; Zhang, S.X.; Gao, Z.J. Dried characteristics of cherry tomatoes using temperature and humidity by stages changed hot-air drying method. Transactions of the Chinese Society of Agricultural Engineering 2014, 30, 271–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.