Publication Cover
Drying Technology
An International Journal
Volume 33, 2015 - Issue 5
216
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Combustion and Pollutant Emission Characteristics of Lignite Dried by Low Temperature Air

, , &

REFERENCES

  • Jangam, S.V.; Karthikeyan, M.; Mujumdar, A.S. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability. Drying Technology 2011, 29(4), 395–407.
  • Karthikeyan, M.; Wu, Z.H.; Mujumdar, A.S. Low-rank coal drying technologies current status and new developments. Drying Technology 2009, 27(3), 403–415.
  • Osman, H.; Jangam, S.V.; Lease, J.D.; Mujumdar, A.S. Drying of low-rank coal (LRC)—A review of recent patents and Innovations. Drying Technology 2011, 29(15), 1763–1783.
  • Bergins, C.; Berger, S.; Strauss, K. Dewatering of fossil fuels and suspensions of ultrafine particles by mechanical/thermal dewatering. Chemical Engineering & Technology 1999, 22(11), 923–927.
  • Clayton, S.A.; Scholes, O.N.; Hoadley, A.F.A.; Wheeler, R.A.; McIntosh, M.J.; Huynh, D.Q. Dewatering of biomaterials by mechanical thermal expression. Drying Technology 2006, 24(7), 819–834.
  • Bergins, C.; Hulston, J.; Strauss, K.; Chaffee, A.L. Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals. Fuel 2007, 86(1–2), 3–16.
  • Sakaguchi, M.; Laursen, K.; Nakagawa, H.; Miura, K. Hydrothermal upgrading of Loy Yang brown coal—Effect of upgrading conditions on the characteristics of the products. Fuel Processing Technology 2008, 89(4), 391–396.
  • Umar, D.F.; Usui, H.; Daulay, B. Effects of processing temperature of hot water drying on the properties and combustion characteristics of an Indonesian low rank coal. Coal Preparation 2005, 25(4), 313–322.
  • Rabie, H.; Mujumdar, A.; Weber, M. Interrupted electroosmotic dewatering of clay suspensions. Separations Technology 1994, 4(1), 38–46.
  • Holdich, R.; Cumming, I.; Ismail, B. Crossflow microfiltration for mineral suspension thickening and washing. Minerals Engineering 1996, 9(2), 243–257.
  • Umar, D.F.; Usui, H.; Daulay, B. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process. Fuel Processing Technology 2006, 87(11), 1007–1011.
  • Kanda, H.; Makino, H. Energy-efficient coal dewatering using liquefied dimethyl ether. Fuel 2010, 89(8), 2104–2109.
  • Wang, Y.; Zhou, L.B. Experimental study on exhaust emissions from a multi-cylinder DME engine operating with EGR and oxidation catalyst. Applied Thermal Engineering 2008, 28(13), 1589–1595.
  • Salmas, C.E.; Tsetsekou, A.H.; Hatzilyberis, K.S.; Androutsopoulos, G.P. Evolution lignite mesopore structure during drying. Effect of temperature and heating time. Drying Technology 2001, 19(1), 35–64.
  • Yang, Y.; Jing, X.; Li, Z.; Liu, X.; Zhang, Y.; Chang, L. Effect of drying conditions on moisture re-adsorption performance of dewatered lignite. Drying Technology 2013, 31(12), 1430–1437.
  • Johnston, P.R.; McMahon, P.; Reich, M.H.; Snook, I.K.; Wagenfeld, H.K. The effect of processing on the fractal pore structure of Victorian brown coal. Journal of Colloid and Interface Science 1993, 155(1), 146–151.
  • McMahon, P.J.; Snook, I.K.; Moss, S.D.; Johnston, P.R. Influence of fractal pores on the oxidation behavior of brown coal. Energy & Fuels 1999, 13(5), 965–968.
  • McMahon, P.J.; Snook, I.K.; Treimer, W. The pore structure in processed Victorian brown coal. Journal of Colloid and Interface Science 2002, 252(1), 177–183.
  • Tahmasebi, A.; Yu, J.; Han, Y.; Li, X. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air. Fuel Processing Technology 2012, 101, 85–93.
  • Tahmasebi, A.; Yu, J.; Han, Y.; Yin, F.; Bhattacharya, S.; Stokie, D. Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy & Fuels 2012, 26(6), 3651–3660.
  • Iglesias, M.J.; de la Puente, G.; Fuente, E.; Pis, J.J. Compositional and structural changes during aerial oxidation of coal and their relations with technological properties. Vibrational Spectroscopy 1998, 17(1), 41–52.
  • Miura, K.; Mae, K.; Li, W.; Kusakawa, T.; Morozumi, F.; Kumano, A. Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique. Energy & Fuels 2001, 15(3), 599–610.
  • Miura, K.; Mae, K.; Sakurada, K.; Hashimoto, K. Flash pyrolysis of coal following thermal pretreatment at low temperature. Energy & Fuels 1992, 6(1), 16–21.
  • Brandes, S.D.; Graff, R.A.; Gorbaty, M.L.; Siskin, M. Modification of coal by subcritical steam: An examination of modified Illinois No. 6 coal. Energy & Fuels 1989, 3(4), 494–498.
  • Graff, R.A.; Brandes, S.D. Modification of coal by subcritical steam: Pyrolysis and extraction yields. Energy & Fuels 1987, 1(1), 84–88.
  • Serio, M.A.; Kroo, E.; Charpenay, S.; Solomon, P.R. Improved liquefaction of low rank coals by reduction of retrogressive reactions. Preprints of Papers - American Chemical Society, Division of Fuel Chemistry 1993, 38, 1021–1030.
  • Patel, M.M.; Grow, D.T.; Young, B.C. Combustion rates of lignite char by TGA. Fuel 1988, 67(2), 165–169.
  • Ma, S.; Hill, J.O.; Heng, S. A thermal-analysis study of the combustion characteristics of Victorian brown coals. Journal of Thermal Analysis 1989, 35(6), 1985–1996.
  • Young, B.C.; Smith, I.W. The combustion of Loy Yang brown coal char. Combustion and Flame 1989, 76(1), 29–35.
  • Ibarra, J.; Miranda, J. Detection of weathering in stockpiled coals by Fourier transform infrared spectroscopy. Vibrational Spectroscopy 1996, 10(2), 311–318.
  • Kauppinen, J.K.; Moffatt, D.J.; Mantsch, H.H.; Cameron, D.G. Fourier self-deconvolution: A method for resolving intrinsically overlapped bands. Applied Spectroscopy 1981, 35(3), 271–276.
  • Maddams, W. The scope and limitations of curve fitting. Applied Spectroscopy 1981, 34(3), 245–267.
  • Michaelian, K.H.; Friesen, W.I. Photoacoustic FTIR spectra of separated western Canadian coal macerals: Analysis of the CH stretching region by curve-fitting and deconvolution. Fuel 1990, 69(10), 1271–1275.
  • Calemma, V.; Rausa, R.; Margarit, R.; Girardi, E. FT-IR study of coal oxidation at low temperature. Fuel 1988, 67(6), 764–770.
  • Yürüm, Y.; Altuntaş, N. Air oxidation of Beypazari lignite at 50°C, 100°C and 150°C. Fuel 1998, 77(15), 1809–1814.
  • Sutcu, H. Pyrolysis by thermogravimetric analysis of blends of peat with coals of different characteristics and biomass. Journal of Thermal Analysis and Calorimetry 2007, 38(3–4), 245–249.
  • Güldoğan, Y.; Durusoy, T.; Bozdemir, T. Pyrolysis kinetics of blends of Gediz lignite with Denizli peat. Energy Sources 2001, 23, 393–399.
  • Vamvuka, D.; Kakaras, E.; Kastanaki, E.; Grammelis, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 2003, 82(15), 1949–1960.
  • Ozbas, K.E. Effect of particle size on pyrolysis characteristics of Elbistan lignite. Journal of Thermal Analysis and Calorimetry 2008, 93(2), 641–649.
  • Li, X.; Ma, B.; Xu, L.; Hu, Z.; Wang, X. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochimica Acta 2006, 441(1), 79–83.
  • Muthuraman, M.; Namioka, T.; Yoshikawa, K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis. Applied Energy 2010, 87(1), 141–148.
  • Muthuraman, M.; Namioka, T.; Yoshikawa, K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Processing Technology 2010, 91(5), 550–558.
  • Yuan, S.; Zhou, Z.J.; Li, J.; Wang, F.C. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace. Applied Energy 2012, 92, 854–859.
  • Metcalfe, E. The pyrolysis of benzonitrile. Fire and Materials 1993, 17(1), 33–37.
  • Ikeda, E.; Mackie, J.C. Thermal decomposition of two coal model compounds—Pyridine and 2-picoline. Kinetics and product distributions. Journal of Analytical and Applied Pyrolysis 1995, 34(1), 47–63.
  • Wu, Z.; Ohtsuka, Y. Remarkable formation of N2 from a Chinese lignite during coal pyrolysis. Energy & Fuels 1996, 10(6), 1280–1281.
  • Li, C.Z.; Tan, L.L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel 2000, 79(15), 1899–1906.
  • Bruinsma, O.S.L.; Tromp, P.J.J.; de Sauvage Nolting, H.J.J.; Moulijn, J.A. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor: 2. Heterocyclic compounds, their benzo and dibenzo derivatives. Fuel 1988, 67(3), 334–340.
  • Hämäläinen, J.P.; Aho, M.J.; Tummavuori, J.L. Formation of nitrogen oxides from fuel-N through HCN and NH3: A model-compound study. Fuel 1994, 73(12), 1894–1898.
  • Li, C.Z.; Nelson, P.F. Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor. Energy & Fuels 1996, 10(5), 1083–1090.
  • Aho, M.J.; Hämäläinen, J.P.; Tummavuori, J.L. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion. Combustion and Flame 1993, 95(1–2), 22–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.