169
Views
4
CrossRef citations to date
0
Altmetric
Regular Articles

Modeling, Simulation, and Experimental Validation of Drying and Denaturation Behavior of Whey Protein Isolate–Based Coatings

, &

REFERENCES

  • Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. International Journal of Polymer Science 2012, Article ID 562381.
  • Schmid, M.; Krimmel, B.; Grupa, U.; Noller, K. Effects of thermally induced denaturation on technological–functional properties of whey protein isolate based films. Journal of Dairy Science 2014, 97(9), 5315–5327.
  • Mc Hugh, T.H.; Aujard, J.F.; Krochta, J.M. Plasticized whey protein edible films: Water vapor permeability properties. Journal of Food Science 1994, 59(2), 416–419.
  • Mc Hugh, T.H.; Krochta, J.M. Sorbitol-plasticized vs. glycerol-plasticized whey-protein edible films—Integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry 1994, 42(4), 841–845.
  • Hammann, F.; Schmid, M. Determination and quantification of molecular interactions in protein films: A review. Materials 2014, 7(12), 7975–7996.
  • Onwulata, C.; Huth, P. Whey Processing, Functionality and Health Benefits; Wiley-Blackwell: Oxford, UK, 2008.
  • de Wit, J.N. Lecturer's Handbook on Whey and Whey Products; European Whey Products Association: Brussels, 2001.
  • Chen, X.D.; Chen, Z.D.; Nguang, S.K.; Anema, S. Exploring the reaction kinetics of whey protein denaturation/aggregation by assuming the denaturation step is reversible. Biochemical Engineering Journal 1998, 2(1), 63–69.
  • Anema, S.G.; McKenna, A.B. Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Journal of Agricultural and Food Chemistry 1996, 44(2), 422–428.
  • Schmid, M.; Hinz, L.-V.; Wild, F.; Noller, K. Effects of hydrolysed whey proteins on the techno-functional characteristics of whey protein–based films. Materials 2013, 6(3), 927–940.
  • Haque, A.M.; Putranto, A.; Aldred, P.; Chen, J.; Adhikari, B. Drying and denaturation kinetics of whey protein isolate (WPI) during convective air drying process. Drying Technology 2013, 31(13–14), 1532–1544.
  • Haque, A.; Aldred, P.; Chen, J.; Barrow, C.; Adhikari, B. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes. Food Chemistry 2013, 141(2), 702–711.
  • Töpel, A. Chemie und Physik der Milch: Naturstoff- Rohstoff- Lebensmittel; Behr's Verlag: Hamburg, Germany, 2004.
  • Jovanovic, S.; Barac, M.; Macej, O. Whey proteins—Properties and possibility of application. Mljekarstvo 2005, 55(3), 215–233.
  • Anema, S.G.; Lloyd, R.J. Analysis of whey protein denaturation: A comparative study of alternative methods. Milchwissenschaft-Milk Science International 1999, 54(4), 206–210.
  • Dickow, J.A.; Kaufmann, N.; Wiking, L.; Hammershøj, M. Protein denaturation and functional properties of lenient steam injection heat treated whey protein concentrate. Innovative Food Science and Emerging Technologies 2012, 13, 178–183.
  • Haque, A.; Aldred, P.; Chen, J.; Barrow, C.; Adhikari, B. Drying and denaturation characteristics of α-lactalbumin, β-lactoglobulin, and bovine serum albumin in a convective drying process. Journal of Agricultural and Food Chemistry 2014, 62(20), 4695–4706.
  • Regalado, C.; Pérez-Pérez, C.; Lara-Cortés, E.; García-Almendarez, B. Whey protein based edible food packaging films and coatings. In Advances in Agricultural and Food Biotechnology; Guevara-González, R.G.; Torres-Pacheco, I. Eds.; Research Signpost: Trivandrum, India, 2006; 237–261.
  • Chen, X.D.; Pirini, W.; Ozilgen, M. The reaction engineering approach to modelling drying of thin layer of pulped Kiwifruit flesh under conditions of small Biot numbers. Chemical Engineering and Processing: Process Intensification 2001, 40(4), 311–320.
  • Chen, X.D.; Lin, S.X.Q. Air drying of milk droplet under constant and time dependent conditions. AIChE Journal 2005, 51(6), 1790–1799.
  • Lin, S.X.Q.; Chen, X.D. Prediction of air drying of milk droplet under relatively high humidity using the reaction engineering approach. Drying Technology 2005, 23(7), 1396–1406.
  • Lin, S.X.Q.; Chen, X.D. A model for drying of an aqueous lactose droplet using the reaction engineering approach. Drying Technology 2006, 24(11), 1329–1334.
  • Lin, S.X.Q.; Chena, X.D. The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying. Chemical Engineering and Processing 2007, 46(5), 437–443.
  • Pelegrine, D.H.G.; Gasparetto, C.A. Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology 2005, 38(1), 77–80.
  • Parris, N.; Baginski, M.A. A rapid method for the determination of whey-protein denaturation. Journal of Dairy Science 1991, 74(1), 58–64.
  • Anandharamakrishnan, C.; Rielly, C.D.; Stapley, A.G.F. Loss of solubility of α-lactalbumin and β-lactoglobulin during the spray drying of whey proteins. LWT - Food Science and Technology 2008, 41(2), 270–277.
  • Ferreira, I.; Cacote, H. Detection and quantification of bovine, ovine and caprine milk percentages in protected denomination of origin cheeses by reversed-phase high-performance liquid chromatography of beta-lactoglobulins. Journal of Chromatography A 2003, 1015(1–2), 111–118.
  • Chen, X.D. The basics of a reaction engineering approach to modeling air-drying of small droplets or thin-layer materials. Drying Technology 2008, 26(6), 627–639.
  • Chen, X.D.; Xie, G.Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model. Food and Bioproducts Processing 1997, 75(4), 213–222.
  • Putranto, A.; Chen, X.D.; Webley, P.A. Infrared and convective drying of thin layer of polyvinyl alcohol (PVA)/glycerol/water mixture—The reaction engineering approach (REA). Chemical Engineering and Processing 2010, 49(4), 348–357.
  • Griffin, W.G.; Griffin, M.C.A.; Martin, S.R.; Price, J. Molecular-basis of thermal aggregation of bovine beta-lactoglobulin-A. Journal of the Chemical Society-Faraday Transactions 1993, 89(18), 3395–3406.
  • Verheul, M.; Roefs, S.; de Kruif, K.G. Kinetics of heat-induced aggregation of β-lactoglobulin. Journal of Agricultural and Food Chemistry 1998, 46(3), 896–903.
  • Sawyer, W.H.; Norton, R.S.; Nichol, L.W.; McKenzie, G.H. Thermodenaturation of bovine beta-lactoglobulin kinetics and introduction of beta-structure. Biochimica et Biophysica Acta 1971, 243(1), 19–30.
  • Dupont, M. Study of a reversible stage in the thermodenaturation of bovine beta-lactoglobulin A. Biochimica et Biophysica Acta 1965, 102(2), 500–513.
  • Sothornvit, R.; Krochta, J.M. Plasticizer effect on mechanical properties of beta-lactoglobulin films. Journal of Food Engineering 2001, 50(3), 149–155.
  • Owens, D.; Wendt, R. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science 1969, 13, 1741–1747.
  • Rabel, W. Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack 1971, 77(10), 997–1005.
  • Kaelble, D. H. Dispersion-polar surface tension properties of organic solids. Journal of Adhesion 1970, 2, 66–81.
  • Testing of Plastics and Elastomer Films, Paper, Board and Other Sheet Materials—Determination of Water Vapour Transmission—Part 1: Gravimetric Method. DIN 53122-1:2001-08. Deutsches Institut für Normung e.V.: Berlin, 2001 (in German).
  • Testing of Plastics—Determination of Gas Transmission Rate—Part 3: Oxygen-Specific Carrier Gas Method for Testing of Plastic Films and Plastics Mouldings. DIN 53380-3:1998-07. Deutsches Institut für Normung e.V: Berlin, 1998 (in German).
  • Yu, K.; Sharp, I.; Guo, Y.J. Ground-Based Wireless Positioning. Wiley: Hoboken, NJ, 2009.
  • Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969 11(1), 1–21.
  • Oldfield, D.J.; Taylor, M.W.; Singh, H. Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. International Dairy Journal 2005, 15(5), 501–511.
  • Wang, W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. International Journal of Pharmaceutics 1999, 185(2), 129–188.
  • Ferreira, I.M.; Mendes, E.; Ferreira, M.A. HPLC/UV analysis of proteins in dairy products using a hydrophobic interaction chromatographic column. Analytical Sciences 2001, 17(4), 499–501.
  • Calvo, M.M.; Leaver, J.; Banks, J.M. Influence of other whey proteins on the heat-induced aggregation of α-lactalbumin. International Dairy Journal 1993, 3(8), 719–727.
  • Schokker, E.P.; Singh, H.; Creamer, L.K. Heat-induced aggregation of beta-lactoglobulin A and B with alpha-lactalbumin. International Dairy Journal 2000, 10(12), 843–853.
  • Dalgleish, D.G.; Senaratne, V.; Francois, S. Interactions between alpha-lactalbumin and beta-lactoglobulin in the early stages of heat denaturation. Journal of Agricultural and Food Chemistry 1997, 45(9), 3459–3464.
  • Bernal, V.; Jelen, P. Thermal stability of whey proteins—A calorimetric study. Journal of Dairy Science 1985, 68(11), 2847–2852.
  • Brown, R.J. Milk coagulation and protein denaturation. In Fundamentals of Dairy Chemistry; Jenness, R.; Marth, E.H.; Wong, N.P.; Keeney, M. Eds.; Aspen Publishers: New York, 1988; 583–601.
  • Kessler, H.-G.; Beyer, H.-J. Thermal denaturation of whey proteins and its effect in dairy technology. International Journal of Biological Macromolecules 1991, 13(3), 165–173.
  • Dannenberg, F.; Kessler, H.G. Reaction kinetics of the denaturation of whey proteins in milk. Journal of Food Science 1988, 53(1), 258–263.
  • Hines, M.E.; Foegeding, E.A. Interactions of alpha-lactalbumin and bovine serum-albumin with beta-lactoglobulin in thermally induced gelation. Journal of Agricultural and Food Chemistry 1993, 41(3), 341–346.
  • Considine, T.; Patel, H.A.; Anema, S.G.; Singh, H.; Creamer, L.K. Interactions of milk proteins during heat and high hydrostatic pressure treatments—A review. Innovative Food Science and Emerging Technologies 2007, 8(1), 1–23.
  • Maa, Y.F.; Hsu, C.C. Protein denaturation by combined effect of shear and air–liquid interface. Biotechnology and Bioengineering 1997, 54(6), 503–512.
  • Maa, Y.F.; Nguyen, P.A.; Hsu, C.C. Spray-coating of rhDNase on lactose: Effect of system design, operational parameters and protein formulation. International Journal of Pharmaceutics 1996, 144(1), 47–59.
  • Gezimati, J.; Singh, H.; Creamer, L.K. Heat-induced interactions and gelation of mixtures of bovine β-lactoglobulin and serum albumin. Journal of Agricultural and Food Chemistry 1996, 44(3), 804–810.
  • Havea, P.; Singh, H.; Creamer, L.K. Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment. Journal of Dairy Research 2001, 68(3), 483–497.
  • Havea, P.; Singh, H.; Creamer, L.K. Formation of new protein structures in heated mixtures of BSA and alpha-lactalbumin. Journal of Agricultural and Food Chemistry 2000, 48(5), 1548–1556.
  • de Wit, J.N. Thermal behaviour of bovine beta-lactoglobulin at temperatures up to 150°C. A review. Trends in Food Science & Technology 2009, 20(1), 27–34.
  • Hillier, R.M.; Lyster, R.L.J. Whey protein denaturation in heated milk and cheese whey. Journal of Dairy Research 1979, 46(1), 95–102.
  • Dannenberg, F.; Kessler, H.G. Application of reaction-kinetics to the denaturation of whey proteins in heated milk. Milchwissenschaft-Milk Science International 1988, 43(1), 3–7.
  • Manji, B.; Kakuda, Y. Thermal denaturation of whey proteins in skim milk. Canadian Institute of Food Science and Technology 1986, 19(4), 163–166.
  • Panick, G.; Malessa, R.; Winter, R. Differences between the pressure- and temperature-induced denaturation and aggregation of beta-lactoglobulin A, B, and AB monitored by FT-IR spectroscopy and small-angle X-ray scattering. Biochemistry 1999, 38(20), 6512–6519.
  • Gough, P.; Jenness, R. Heat denaturation of β-lactoglobulins A and B. Journal of Dairy Science 1962, 45(9), 1033–1039.
  • Lyster, R.L.J. The denaturation of α-lactalbumin and β-lactoglobulin in heated milk. Journal of Dairy Research 1970, 37(2), 233–243.
  • Ruegg, M.; Moor, U.; Blanc, B. Calorimetric study of thermal-denaturation of whey proteins in simulated milk ultrafiltrate. Journal of Dairy Research 1977, 44(3), 509–520.
  • Tolkach, A.; Kulozik, U. Reaction kinetic pathway of reversible and irreversible thermal denaturation of β-lactoglobulin. Lait 2007, 87(4–5), 301–315.
  • Schmid, M. Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 2013, 6(8), 3245–3269.
  • Pérez-Gago, M.B.; Nadaud, P.; Krochta, J.M. Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. Journal of Food Science 1999, 64(6), 1034–1037.
  • Schmid, M.; Sängerlaub, S.; Wege, L.; Stäbler, A. Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packaging Technology and Science 2014, 27(10), 799–817.
  • Guckian, S.; Dwyer, C.; O'Sullivan, M.; O'Riordan, E.D.; Monahan, F.J. Properties of and mechanisms of protein interactions in films formed from different proportions of heated and unheated whey protein solutions. European Food Research and Technology 2006, 223(1), 91–95.
  • Hong, S.I.; Krochta, J.M. Whey protein isolate coating on LDPE film as a novel oxygen barrier in the composite structure. Packaging Technology and Science 2004, 17(1), 13–21.
  • Hong, Y.H.; Creamer, L.K. Changed protein structures of bovine beta-lactoglobulin B and alpha-lactalbumin as a consequence of heat treatment. International Dairy Journal 2002, 12(4), 345–359.
  • Mate, J.I.; Krochta, J.M. Comparison of oxygen and water vapor permeabilities of whey protein isolate and β-lactoglobulin edible films. Journal of Agricultural and Food Chemistry 1996, 44(10), 3001–3004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.