475
Views
23
CrossRef citations to date
0
Altmetric
Selected Papers from the 19th International Drying Symposium (IDS 2014), Part 2

Multiscale Approaches to Processes That Combine Drying with Particle Formation

REFERENCES

  • Mestry, A.P.; Mujumdar, A.S.; Thorat, B.N. Optimization of spray drying of an innovative functional food: Fermented mixed juice of carrot and watermelon. Drying Technology 2011, 29, 1121–1131.
  • Walton, D.E.; Mumford, C.J. The morphology of spray-dried products: The effect of process variables upon the morphology of spray dried particles. Chemical Engineering Research and Design 1999, 77, 21–38.
  • Mezhericher, M.; Levy, A.; Borde, I. Theoretical models of single droplet drying kinetics: A review. Drying Technology 2010, 28, 278–293.
  • Walzel, P.; Furuta, T. Morphology and properties of spray-dried particles. In Modern Drying Technology, Vol. 3; Tsotsas, E.; Mujumdar, A.S. Eds.; Wiley-VCH: Weinheim, Germany, 2011; 231–294.
  • Brenn, G.; Wiedemann, T.; Rensink, D.; Kastner, O.; Yarin, A.L. Modeling and experimental investigation of the morphology of spray dried particles. Chemical Engineering Technology 2001, 24, 1113–1116.
  • Vehring, R.; Foss, W.R. Particle formation in spray drying. Journal of Aerosol Science 2007, 38, 728–746.
  • Sloth, J.; Jorgensen, K.; Bach, P.; Jensen, A.D.; Kiil, S.; Dam-Johansen, K. Spray drying of suspensions for pharma and bio products: Drying kinetics and morphology. Industrial and Engineering Chemistry Research 2009, 48, 3657–3664.
  • Bück, A.; Peglow, M.; Naumann, M.; Tsotsas, E. A population balance model for drying of droplets containing aggregating nanoparticles. American Institute of Chemical Engineering Journal 2012, 58, 3318–3328.
  • Mezhericher, M.; Naumann, M.; Peglow, M.; Levy, A.; Tsotsas, E.; Borde, I. Continuous species transport and population balance models for first drying stage of nanosuspension droplets. Chemical Engineering Journal 2012, 210, 120–135.
  • Tsotsas, E. Influence of drying kinetics on particle formation: A personal perspective. Drying Technology 2012, 30, 1129–1135.
  • Nesic, S.; Vodnik, J. Kinetics of droplet evaporation. Chemical Engineering Science 1991, 46, 527–537.
  • Peglow, M.; Metzger, T.; Lee, G.; Schiffter, H.; Hampel, R.; Heinrich, S.; Tsotsas, E. Measurement of average moisture content and drying kinetics for single particles, droplets and dryers. In Modern Drying Technology, Vol. 2; Tsotsas, E.; Mujumdar, A.S., Eds.; Wiley-VCH: Weinheim, Germany, 2009; 1–70.
  • Fu, N.; Woo, M.W.; Chen, X.D. Single droplet drying technique to study drying kinetics measurement and particle functionality: A review. Drying Technology 2012, 30, 1771–1785.
  • Groenewold, C.; Möser, C.; Groenewold, H.; Tsotsas, E. Determination of single particle drying kinetics in an acoustic levitator. Chemical Engineering Journal 2002, 86, 217–222.
  • Schmitz, I.; Gianfrancesco, A.; Kulozik, U.; Foerst, P. Kinetics of lysine loss in an infant formula model system at conditions applicable to spray drying. Drying Technology 2011, 29, 1876–1883.
  • Perdana, J.; Fox, M.B.; Schutyser, M.A.I.; Boom, R.M. Enzyme inactivation kinetics: Coupled effects of temperature and moisture content. Food Chemistry 2012, 133, 116–123.
  • Zbicinski, I.; Li, X. Conditions for accurate CFD modelling of spray-drying processes. Drying Technology 2006, 24, 1109–1114.
  • Blei, S.; Sommerfeld, M. CFD in drying technology: Spray dryer simulation. In Modern Drying Technology, Vol. 1; Tsotsas, E.; Mujumdar, A.S. Eds.; Wiley-VCH: Weinheim, Germany, 2007; 155–208.
  • Langrish, T. Multi-scale mathematical modeling of spray dryers. Journal of Food Engineering 2009, 93, 218–228.
  • Mezhericher, M.; Levy, A.; Borde, I. Modelling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology 2009, 27, 359–370.
  • Kievit, F.; Kerkhof, P.J.A.M. Measurements of particle residence time distributions in a co-current spray dryer. Drying Technology 1995, 12, 1241–1248.
  • Kievit, F.; Kerkhof, P.J.A.M. Airflow, temperature and humidity patterns in a co-current spray dryer: Modeling and measurement. Drying Technology 1997, 15, 1763–1773.
  • Chen, X.D. The basics of a reaction engineering approach to modeling air-drying of small droplets or thin-layer materials. Drying Technology 2008, 26, 627–639.
  • Hecht, J.P.; King, C.J. Spray drying: Influence of developing drop morphology on drying rates and the retention of volatile substances, Part 2: Modeling. Industrial and Engineering Chemistry Research 2000, 39, 1766–1774.
  • Zhu, C.; Ertl, M.; Weigand, B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence. Physics of Fluids 2013, 25, 083102.
  • Houben, R.J. Apparatus and Method for Printing a Fluid by Means of a Continuous Jet Printing Technique. World Patent WO2004018212, 2004.
  • Mörl, L.; Heinrich, S.; Peglow, M. Fluidized bed spray granulation. In Handbook of Powder Technology, Vol. 11; Salman, A.D.; Hounslow, M.J.; Seville, J.P.K., Eds.; Elsevier: Amsterdam, 2007; 21–188.
  • Hoffmann, T.; Bachmann, P.; Peglow, M.; Tsotsas, E. Investigation of growth kinetics in fluidized bed spray granulation. In Proceedings of 5th International Granulation Workshop, Lausanne, Switzerland, June 20–22, 2011.
  • Hoffmann, T.; Peglow, M.; Tsotsas, E. Particle formation in fluidized bed spray granulation. In Proceedings of International Congress on Particle Technology, PARTEC, Nuremberg, Germany, April 23–25, 2013.
  • Peglow, M.; Antonyuk, S.; Jacob, M.; Palzer, S.; Heinrich, S.; Tsotsas, E. Particle formulation in spray fluidized beds. In Modern Drying Technology, Vol. 3; Tsotsas, E.; Mujumdar, A.S. Eds.; Wiley-VCH: Weinheim, Germany, 2011; 295–378.
  • Koslowski, K. Methoden zur Bestimmung der Schichtdickenverteilung von in Wirbelschichten ummantelten Partikeln. M.Sc. Thesis, Otto von Guericke University Magdeburg, 2013.
  • Perfetti, G.; van de Casteele, E.; Rieger, B.; Wildeboeb, W.J.; Meesters, G.M.H. X-ray micro tomography and image analysis as complementary methods for morphological characterization and coating thickness measurement of coated particles. Advanced Powder Technology 2010, 21, 663–675.
  • Lee, M.J.; Seo, D.Y.; Lee, H.E.; Wang, I.C.; Kim, W.S.; Jeong, M.Y.; Choi, G.J. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. International Journal of Pharmaceutics 2011, 403, 66–72.
  • Zhong, S.; Shen, Y.C.; Ho, L.; May, R.K.; Zeitler, J.A.; Evans, M.; Taday, P.F.; Pepper, M.; Rades, T.; Gordon, K.C.; Müller, R.; Kleinebudde, P. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optics and Lasers in Engineering 2011, 49, 361–365.
  • Laksmana, F.L.; van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles. Pharmaceutical Research 2009, 26, 965–976.
  • Wassermann, M.; Weinholz, S.; Ivanova, N.; Cordes, C.; Peglow, M.; Pergande, W. Granulation of lactic acid bacteria using fluidized bed technology. In Proceedings of 5th International Granulation Workshop, Lausanne, Switzerland, June 20–22, 2011.
  • Wassermann, M. Niedertemperaturgranulierung von mikroorganismen. Ph.D. Thesis, Otto von Guericke University Magdeburg, 2015.
  • Rabani, E.; Reichmann, D.R.; Geissler, P.L.; Brus, L.E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.
  • Kelly-Zion, P.L.; Pursell, C.J.; Vaidya, S.; Batra, J. Evaporation of sessile drops under combined diffusion and natural convection. Colloids and Surfaces A, 2011, 381, 31–36.
  • Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S.; Tsotsas, E.; Mörl, L.; Hounslow, M.; Reynolds, G. Numerical methods on population balances. In Modern Drying Technology, Vol. 1; Tsotsas, E.; Mujumdar, A.S. Eds.; Wiley-VCH: Weinheim, Germany, 2007; 209–260.
  • Poon, J.M.; Ramachandran, R.; Sanders, C.; Glaser, T.; Immanuel, C.D.; Doyle, F.J.; Litster, J.D.; Wang, F.Y.; Cameron, I.T.; Stepanek, F. Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation. Chemical Engineering Science 2009, 64, 775–786.
  • Hussain, M.; Kumar, J.; Peglow, M.; Tsotsas, E. Modeling spray fluidized bed aggregation kinetics on the basis of Monte-Carlo simulation results. Chemical Engineering Science 2013, 101, 35–45.
  • Hussain, M. Mathematical modeling of particulate processes using Monte Carlo simulations. Ph.D. Thesis, Otto von Guericke University Magdeburg, 2014.
  • Terrazas-Velarde, K.; Peglow, M.; Tsotsas, E. Investigation of the kinetics of fluidized bed spray agglomeration based on stochastic methods. AIChE Journal 2011, 57, 3012–3026.
  • Ennis, B.J.; Tardos, G.; Pfeffer, R. A microlevel-based characterization of granulation phenomena. Powder Technology 1991, 65, 257–272.
  • Dadkhah, M.; Tsotsas, E. Influence of process variables on internal particle structure in spray fluidized bed agglomeration. Powder Technology 2014, 258, 165–173.
  • Dadkhah, M. Morphological characterization of agglomerates produced in a spray fluidized bed by X-ray tomography. Ph.D. Thesis, Otto von Guericke University Magdeburg, 2014.
  • Terrazas-Velarde, K.; Peglow, M.; Tsotsas, E. Kinetics of fluidized bed spray agglomeration for compact and porous particles. Chemical Engineering Science 2011, 66, 1866–1878.
  • Dernedde, M.; Peglow, M.; Tsotsas, E. A novel structure-tracking Monte-Carlo algorithm for spray fluidized bed agglomeration. AIChE Journal 2012, 58, 3016–3029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.