Publication Cover
Drying Technology
An International Journal
Volume 34, 2016 - Issue 9
375
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Fuel characteristics of molasses-impregnated low-rank coal produced in a top-spray fluidized-bed reactor

, , , , , , , , , & show all

References

  • Milici, R.C.; Flores, R.M.; Stricker, G.D. Coal resources, reserves and peak coal production in the United States. International Journal of Coal Geology 2013, 113, 109–115.
  • Pone, J.D.N.; Hein, K.A.A.; Stracher, G.B.; Annegarn, H.J.; Finkleman, R.B.; Blake, D.R.; McCormack, J.K.; Schroeder, P. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology 2007, 72, 124–140.
  • Jangam, S.V.; Karthikeyan, M.; Mujumdar, A.S. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability. Drying Technology 2011, 29(4), 395–407.
  • Karthikeyan, M.; Zhonghua, W.; Mujumdar, A.S. Low-rank coal drying technologies: Current status and new developments. Drying Technology 2009, 27, 403–415.
  • Ryoichi, K.; Michitaka, I.; Hisao, M.; Masayoshi, K.; Tetsuo, M. Pulverized coal combustion characteristics of high-fuel-ratio coals. Fuel 2004, 83, 1777–1785.
  • Mangena, S.J.; Korte, G.J.; McCrindle, R.I.; Morgan, D.L. The amenability of some witbank bituminous ultra-fine coals to binderless briquetting. Fuel Processing Technology 2004, 85, 1647–1662.
  • Umar, D.F.; Usui, H.; Daulay, B. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process. Fuel Processing Technology 2006, 87, 1007–1011.
  • Klutz, H.J.; Moser, C.; Block, D. WTA fine grain drying-module for lignite-fired power plants of the future. VGB Power Tech Report 2006, 11, 57–61.
  • Park, J.H.; Lee, C.-H.; Park, Y.C.; Shun, D.; Bae, D.-H.; Park, J. Drying efficiency of Indonesian lignite in a batch-circulating fluidized bed dryer. Drying Technology 2014, 32, 268–278.
  • Fei, Y.; Abd Aziz, A.; Nasir S.; Jackson, W.R.; Marshall, M.; Hulston, J.; Chaffee, A.L. The spontaneous combustion behavior of some low rank coals and a range of dried products. Fuel 2009, 88, 1650–1655.
  • Lee, D.-W.; Bae, J.-S.; Lee, Y.-J.; Park, S.-J.; Hong, J.-C.; Lee, B.-H.; Jeon, C.-H.; Choi, Y.-C. Two-in-one fuel combining sugar cane with low rank coal and its CO2 reduction effects in pulverized-coal power plants. Environmental Science & Technology 2013, 47(3), 1704–1710.
  • Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302.
  • Lintunen, J.; Kangas, H.-L. The case of co-firing: The market level effects of subsidizing biomass co-combustion. Energy Economics 2010, 32, 694–701.
  • Aguilar, F.X.; Goerndt, M.E.; Song, N.; Shifley, S. Internal, external and location factors influencing cofiring of biomass with coal in the U.S. northern region. Energy Economics 2012, 34, 1790–1798.
  • Tabata, T.; Torikai, H.; Tsurumaki, M.; Genchi, Y.; Ukegawa, K. Life cycle assessment for co-firing semi-carbonized fuel manufactured using woody biomass with coal: A case study in the central area of Wakayama, Japan. Renewable and Sustainable Energy Reviews 2011, 15, 2772–2778.
  • Hu, S.; Man, C.; Gao, X.; Zhang, J.; Xu, X.; Che, D. Energy analysis of low-rank coal pre-drying power generation systems. Drying Technology 2013, 31(11), 1194–1205.
  • Demirbas, A. Combustion systems for biomass fuel. Energy Sources, Energy Sources, Part: A 2007, 29, 303–312.
  • Bae, J.-S.; Lee, D.-W.; Lee, Y.-J.; Park, S.-J.; Hong, J.-C.; Kim, J.-G.; Lee, B.-H.; Jeon, C.-H.; Han, J.; Choi, Y.-C. Production of the glycerol-impregnated hybrid coal and its characterization. Fuel 2014, 118, 33–40.
  • Chun, D.H.; Kim, S.D.; Rhim, Y.J.; Jo, E.M.; Park, I.S.; Nho, N.S.; Choi, H.K.; Yoo, J.; Lim, J.H.; Lee, S.H. Pilot-scale studies on upgrading of an Indonesian low-rank coal using palm oil residues. International Journal of Coal Preparation and Utilization 2014, 34, 98–109.
  • Osman, H.; Jangam, S.V.; Lease, J.D.; Mujumdar, A.S. Drying of low-rank coal (LRC): A review of recent patents and innovations. Drying Technology 2011, 29, 1763–1783.
  • Zhu, J.; Wang, Q.; Lu, X. Status and developments of drying low rank coal with superheated steam in China. Drying Technology 2015, 33(9), 1086–1100.
  • Messai, S.; Sghaier, J.; El Ganaoui, M.; Chrusciel, L.; Gabsi, S. Low-pressure superheated steam drying of a porous media. Drying Technology 2015, 33(1), 103–110.
  • Pawlak-Kruczek, H.; Plutecki, Z.; Michalski, M. Brown coal drying in a fluidized bed applying a low-temperature gaseous medium. Drying Technology 2014, 32(11), 1334–1342.
  • Arima, K.; Tsuchiyama, Y.; Suzuki, T.; Sawatsubashi, T.; Kakigami, H.; Kinoshita, M.; Ishii, H. Drying characteristics of wet brown coal particles in a steam fluidized bed. Kagaku Kogaku Ronbunshu 2015, 41(2), 100–106.
  • Arima, K.; Fukuda, N.; Takashima, R.; Katsuki, N.; Sawatsubashi, T.; Kinoshita, M.; Ishii, H. Heat transfer in a fluidized bed of wet brown coal particles. Kagaku Kogaku Ronbunshu 2015, 41(2), 140–147.
  • Ng, W.K.; Tan, R.B.H. Case study: Optimization of an industrial fluidized bed drying process for large Geldart Type D nylon particles. Powder Technology 2008, 180, 289–295.
  • Levy, E.; Caram, H.S.; Yao, Z.; Wei, Z.; Sarunac, N. Kinetics of coal drying in bubbling fluidized beds. In Fifth World Congress on Particle Technology, Orlando, Florida, April 26 2006.
  • Wang, W.-C. Laboratory investigation of drying process of Illinois coals. Powder Technology 2012, 225, 72–85.
  • Si, C.; Wu, J.; Wang, Y.; Zhang, Y.; Shang, X. Drying of low-rank coals: A review of fluidized bed technologies. Drying Technology 2015, 33(3), 277–287.
  • Rao, Z.; Zhao, Y.; Huang, C.; Duan, C.; He, J. Recent developments in drying and dewatering for low rank coals. Progress in Energy and Combustion Science 2015, 46, 1–11.
  • Le Roux, M.; Campbell, Q.P.; Van Rensburg, M.J.; Peters, E.S.; Stiglingh, C. Air drying of fine coal in a fluidized bed. Journal of the Southern African Institute of Mining and Metallurgy 2015, 115(4), 335–338.
  • ASTM. Standard Test Method for Equilibrium Moisture of Coal at 96 to 97 Percent Relative Humidity and 30°C. ASTM Book of Standards. https://www.bsbedge.com/astm/astmd1412-standard (2014).
  • Bae, J.-S.; Lee, D.-W.; Lee, Y.-J.; Park, S.-J.; Park, J.-H; Hong, J.-C.; Kim, J.-G.; Yoon, S.-P; Kim, H.-T.; Han, C.; Choi, Y.-C. Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses. Powder Technology 2014, 254, 72–77.
  • Syahrul, S.; Hamdullahpur, F.; Dincer, I. Thermal analysis in fluidized bed drying of moist particles. Applied Thermal Engineering 2002, 22, 1763–1775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.