Publication Cover
Drying Technology
An International Journal
Volume 34, 2016 - Issue 16
609
Views
30
CrossRef citations to date
0
Altmetric
Regular Articles

Influence of pore structure and impregnation–drying conditions on the solid distribution in porous support materials

, , , , , , , & show all

References

  • Shokri, N.; Lehmann, P.; Or, D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface. Physical Review E 2010, 81(4), 046308.
  • Pel, L.; Huinink, H.; Kopinga, K. Salt transport and crystallization in porous building materials. Magnetic Resonance Imaging 2003, 21(3–4), 317–320.
  • Scherer, G.W. Stress from crystallization of salt. Cement and Concrete Research 2004, 34, 1613–1624.
  • Santhanam, N.; Conforti, T.A.; Spieker, W.; Regalbuto, J.R. Nature of metal catalyst precursors adsorbed onto oxide supports. Catalysis Today 1994, 21, 141–156.
  • Lekhal, A.; Glasser, B.J.; Khinast, J.G. Impact of drying on the catalyst profile in supported impregnation catalysts. Chemical Engineering Science 2001, 56, 4473–4478.
  • Liu, X.; Khinast, J.G.; Glasser, B.J. A parametric investigation of impregnation and drying of supported catalysts. Chemical Engineering Science 2008, 63, 4517–4530.
  • Lysova, A.A.; Bergwerff, J.A.; Espinosa-Alonso, L.; Weckhuysen, B.M.; Koptyug, I.V. Magnetic resonance imaging as an emerging tool for studying the preparation of supported catalysts. Applied Catalysis A: General 2010, 374, 126–136.
  • Rahimi, A.; Metzger, T.; Kharaghani, A.; Tsotsas, E. Interaction of droplets with porous structures: Pore network simulation of wetting and drying. Drying Technology 2016, 34(9), 1129–1140.
  • Schultz, P. Trocknung kapillarporöser Körper bei Anwesenheit auskristallisierender Stoffe in der Gutsfeuchte. PhD thesis. Universität Karlsruhe, Karlsruhe, 1990.
  • Rad, N.M.; Shokri, N. Nonlinear effects of salt concentrations on evaporation from porous media. Geophysical Research Letters 2012, 39, L04403.
  • Rad, N.M.; Shokri, N.; Sahimi, M. Pore-scale dynamics of salt precipitation in drying porous media. Physical Review E 2013, 88, 032404.
  • Liu, X.; Khinast, J.G.; Glasser, B.J. Drying of supported catalysts: A comparison of model predictions and experimental measurements of metal profiles. Industrial & Engineering Chemistry Research 2010, 49(6), 2649–2657.
  • Liu, X.; Khinast, J.G.; Glasser, B.J. Drying of supported catalysts for low melting point precursors: Impact of metal loading and drying methods on the metal distribution. Chemical Engineering Science 2012, 79, 187–199.
  • Vorhauer, N.; Tran, Q.T.; Metzger, T.; Tsotsas, E.; Prat, M. Experimental investigation of drying in a model porous medium: influence of thermal gradients. Drying Technology 2013, 31(8), 920–929.
  • Yiotis, A.G.; Boudouvis, A.G.; Stubos, A.K.; Tsimpanogiannis, I.N.; Yortsos, Y.C. Effect of liquid films on the drying of porous media. AIChE Journal 2004, 50(11), 2721–2737.
  • Yiotis, A.G.; Tsimpanogiannis, I.N.; Stubos, A.K. Fractal characteristicsand scaling of the drying front in porous media: A pore network study. Drying Technology 2010, 28(8), 981–990.
  • Prat, M. On the influence of pore shape, contact angle and film flows on drying of capillary porous media. International Journal of Heat and Mass Transfer 2007, 50(7–8), 1455–1468.
  • Xu, P.; Mujumdar, A.S.; Yu, B. Fractal theory on drying: A review. Drying Technology 2008, 26(6), 640–650.
  • Prat, M.; VeranTissoires, S.; Vorhauer, N.; Metzger, T.; Tsotsas, E. Fractal phase distribution and drying: Impact on two-phase zone scaling and drying time scale dependence. Drying Technology 2012, 30(11–12), 1129–1135.
  • Cai, J.; Yu, B.; Zou, M.; Luo, L. Fractal characterization of spontaneous co-current imbibition in porous media. Energy and Fuels 2010, 24(3), 1860–1867.
  • Eloukabi, H.; Sghaier, N.; Prat, M.; Ben Nassrallah, S. Drying experiments in a hydrophobic model porous medium in the presence of a dissolved salt. Chemical Engineering & Technology 2011, 34(7), 1085–1094.
  • Eloukabi, H.; Sghaier, N.; Ben Nassrallah; Prat, M. Experimental study of the effect of sodium chloride on drying of porous media: The crusty-patchy efflorescence transition. International Journal of Heat and Mass Transfer 2013, 56, 80–93.
  • Veran-Tissoires, S. Sur le phénomène de cristallisation discrète à la surface ou à l’intérieur d’un milieu poreux. PhD thesis. Université de Toulouse, Toulouse, France, 2011.
  • Koptyug, I.V.; Kabanikhin, S.I.; Iskakov, K.T.; Fenelonov, V.B.; Khitrina, L.Y.; Sagdeev, R.Z.; Parmon, V.N. A quantitative NMR imaging study of mass transport in porous solids during drying. Chemical Engineering Science 2000, 55, 1559–1571.
  • Nachshon, U.; Weisbrod, N.; Dragila, M.; Garder, A. Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resources Research 2011, 47, W12519.
  • Huinink, H.; Petkovic, J.; Pel, L.; Kopinga, K. Water and salt transport in plaster/substrate systems. HERON 2006, 51, 9–31.
  • Irawan, A. Isothermal drying of pore networks: Influence of pore structure on drying kinetics. PhD thesis. Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2006.
  • Metzger, T.; Irawan, A.; Tsotsas, E. Influence of pore structure on drying kinetics: A pore network study. AIChE Journal 2007, 53(12), 3029–3041.
  • Wang, Y.; Kharaghani, A.; Metzger, T.; Tsotsas, E. Pore network drying model for particle aggregates: assessment by X-ray microtomography. Drying Technology 2012, 30(15), 1800–1809.
  • Metzger, T.; Irawan, A.; Tsotsas, E. Isothermal drying of pore networks: Influence of friction for different pore structures. Drying Technology 2007, 25(1), 49–57.
  • Metzger, T.; Tsotsas, E. Viscous stabilization of drying front: Three-dimensional pore network simulations. Chemical Engineering Research and Design 2008, 86, 739–744.
  • SanMartin, F.A.; Laurindo, J.B.; Segura, L.A. Pore-scale simulation of drying of a porous media saturated with a sucrose solution. Drying Technology 2011, 29, 883–887.
  • Pattl, K.R.; Tripathi, A.D.; Pathak, G.; Kattl, S.S. Thermodynamic properties of aqueous electrolyte solutions: 2. Vapor pressure of aqueous solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2 and BaBr2. Journal of Chemical & Engineering Data 1991, 36, 225–230.
  • Rahimi, A.; Kharaghani, A.; Metzger, T.; Tsotsas, E. Pore network model for drying of salt solutions: Solute migration and crystallization. In Proceedings Nordic Baltic Drying Conference, Gdansk, Poland, June 17–19, 2015.
  • Metzger, T.; Tsotsas, E. Influence of pore size distribution on drying kinetics: A simple capillary modell. Drying Technology 2005, 23, 1797–1809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.