Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 2
2,963
Views
134
CrossRef citations to date
0
Altmetric
Review Article

Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications

, &

References

  • Gomez-Estaca, J.; Balaguer, M.P.; Gavara, R.; Hernandez-Munoz, P. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocolloids 2012, 28(1), 82–91. doi:10.1016/j.foodhyd.2011.11.013.
  • Jafari, S.M.; He, Y.; Bhandari, B. Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International 2007, 40(7), 862–873. doi:10.1016/j.foodres.2007.02.002.
  • Mahdavi, S.A.; Jafari, S.M.; Ghorbani, M.; Assadpoor, E. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology 2014, 32(5), 509–518. doi:10.1080/07373937.2013.839562.
  • Augustin, M.A.; Hemar, Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews 2009, 38(4), 902–912. doi:10.1039/b801739p.
  • Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends in Food Science and Technology 2010, 21(10), 510–523. doi:10.1016/j.tifs.2010.08.003.
  • Yamamoto, C.; Neoh, T.L.; Honbou, H.; Furuta, T.; Kimura, S.; Yoshii, H. Formation of a polymer-coated inclusion complex of D-limonene and β-cyclodextrin by spray drying. Drying Technology 2012, 30(15), 1714–1719. doi:10.1080/07373937.2012.699487.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 2007, 40(9), 1107–1121. doi:10.1016/j.foodres.2007.07.004.
  • Botrel, D.A.; Borges, S.V.; Fernandes, R.V.D.B.; Do Carmo, E.L. Optimization of fish oil spray drying using a protein: Inulin system. Drying Technology 2014, 32(3), 279–290. doi:10.1080/07373937.2013.823621.
  • Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews 2009, 61(12), 1043–1054 10.1016/j.addr.2009.07.013.
  • López-Rubio, A.; Lagaron, J.M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies 2012, 13, 200–206. doi:10.1016/j.ifset.2011.10.012.
  • Qi, H.; Hu, P.; Xu, J.; Wang, A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment. Biomacromolecules 2006, 7(8), 2327–2330. doi:10.1021/bm060264z.
  • Zhang, W.F.; Chen, X.G.; Li, P.W.; Liu, C.S.; He, Q.Z. Preparation and characterization of carboxymethyl chitosan and β-cyclodextrin microspheres by spray drying. Drying Technology 2007, 26(1), 108–115. doi:10.1080/07373930701781736.
  • Zuidam, N.J.; Shimoni, E. Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam N.J. and Nedovic V. Eds.; Springer: New York, 2010, 3–29.
  • Adamiec, J. Moisture sorption characteristics of peppermint oil microencapsulated by spray drying. Drying Technology 2009, 27(12), 1363–1369. doi:10.1080/07373930903383695.
  • Singh, A.; Van den Mooter, G. Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews 2015, 100, 27–50. doi:10.1016/j.addr.2015.12.010.
  • Paramita, V.; Iida, K.; Yoshii, H.; Furuta, T. Effect of additives on the morphology of spray-dried powder. Drying Technology 2010, 28(3), 323–329. doi:10.1080/07373931003627098.
  • Seydel, P.; Blömer, J.; Bertling, J. Modeling particle formation at spray drying using population balances. Drying Technology 2006, 24(2), 137–146. doi:10.1080/07373930600558912.
  • Caliskan, G.; Nur Dirim, S. The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing 2013, 91(4), 539–548. doi:10.1016/j.fbp.2013.06.004.
  • Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology 2008, 26(7), 816–835. doi:10.1080/07373930802135972.
  • Langrish, T.A.G.; Premarajah, R. Antioxidant capacity of spray-dried plant extracts: Experiments and simulations. Advanced Powder Technology 2013, 24(4), 771–779. doi:10.1016/j.apt.2013.03.020.
  • Shu, B.; Yu, W.; Zhao, Y.; Liu, X. Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering 2006, 76, 664–669. doi:10.1016/j.jfoodeng.2005.05.062.
  • Goula, A.M.; Adamopoulos, K.G. A new technique for spray-dried encapsulation of lycopene. Drying Technology 2012, 30(6), 641–652. doi:10.1080/07373937.2012.655871.
  • Brückner, M.; Bade, M.; Kunz, B. Investigations into the stabilization of a volatile aroma compound using a combined emulsification and spray drying process. European Food Research and Technology 2007, 226(1–2), 137–146. doi:10.1007/s00217–006-0518-3.
  • Yamamoto, C.; Neoh, T.L.; Honbou, Y.; Furuta, T.; Kimura, S.; Yoshii, H. Evaluation of flavor release from spray-dried powder by ramping with dynamic vapor sorption–gas chromatography. Drying Technology 2012, 30(10), 1045–1050. doi:10.1080/07373937.2012.683842.
  • Paramita, V.; Iida, K.; Yoshii, H.; Furuta, T. Effect of feed liquid temperature on the structural morphologies of D-limonene microencapsulated powder and its preservation. Journal of Food Science 2009, 75(1), E39–E45. doi:10.1111/j.1750-3841.2009.01406.x.
  • Zbicinski, I.; Delag, A.; Strumillo, C.; Adamiec, J. Advanced experimental analysis of drying kinetics in spray drying. Chemical Engineering Journal 2002, 86(1–2), 207–216. doi:10.1016/S1385-8947(01)00291-1.
  • Cortés-Rojas, D.F.; Souza, C.R.F.; Oliveira, W.P. Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design 2015, 93, 366–376. doi:10.1016/j.cherd.2014.06.010.
  • Reineccius, G.A. The spray drying of food flavors. Drying Technology 2004, 22(6), 1289–1324. doi:10.1081/DRT-120038731.
  • Judson King, C. Spray drying: Retention of volatile compounds revisited. Drying Technology 1995, 13(5–7), 1221–1240. doi:10.1080/07373939508917018.
  • Ozmen, L.; Langrish, T.A.G. An experimental investigation of the wall deposition of milk powder in a pilot-scale spray dryer. Drying Technology 2003, 21(7), 1253–1272. doi:10.1081/DRT-120023179.
  • Santana, A.A.; Kurozawa, L.E.; de Oliveira, R.A.; Park, J.K. Influence of process conditions on the physicochemical properties of pequi powder produced by spray drying. Drying Technology 2013, 31, 825–836. doi:10.1080/07373937.2013.766619.
  • de Souza, V.B.; Thomazini, M.; de Carvalho Balieiro, J.C.; Fávaro-Trindade, C.S. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing 2015, 93, 39–50. doi:10.1016/j.fbp.2013.11.001.
  • Bringas-Lantigua, M.; Valdés, D.; Pino, J.A. Influence of spray-dryer air temperatures on encapsulated lime essential oil. International Journal of Food Science and Technology 2012, 47(7), 1511–1517. doi:10.1111/j.1365-2621.2012.02999.x.
  • Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A.; Silva, E.K.; da Costa, J.M.G.; Queiroz, F. Microencapsulation of rosemary essential oil: Characterization of particles. Drying Technology 2013, 31(11), 1245–1254. doi:10.1080/07373937.2013.785432.
  • Goula, A.M.; Adamopoulos, K.G. A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies 2010, 11(2), 342–351. doi:10.1016/j.ifset.2009.12.001.
  • Obón, J.M.; Castellar, M.R.; Alacid, M.; Fernández-López, J.A. Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. Journal of Food Engineering 2009, 90(4), 471–479. doi:10.1016/j.jfoodeng.2008.07.013.
  • Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification 2007, 46(5), 386–392. doi:10.1016/j.cep.2006.06.020.
  • Bakowska-Barczak, A.M.; Kolodziejczyk, P.P. Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products 2011, 34(2), 1301–1309. doi:10.1016/j.indcrop.2010.10.002.
  • Huynh, T.V.; Caffin, N.; Dykes, G.A.; Bhandari, B. Optimization of the microencapsulation of lemon myrtle oil using response surface methodology. Drying Technology 2008, 26(3), 357–368 10.1080/07373930801898182.
  • Tan, S.P.; Kha, T.C.; Parks, S.E.; Stathopoulos, C.E.; Roach, P.D. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology 2015, 281, 65–75. doi:10.1016/j.powtec.2015.04.074.
  • Jarunglumlert, T.; Nakagawa, K. Spray drying of casein aggregates loaded with β-carotene: Influences of acidic conditions and storage time on surface structure and encapsulation efficiencies. Drying Technology 2013, 31(13–14), 1459–1465. doi:10.1080/07373937.2013.800548.
  • Vaidya, S.; Bhosale, R.; Singhal, R.S. Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Drying Technology 2006, 24(8), 983–992. doi:10.1080/07373930600776159.
  • Liu, W.; Chen, X.D.; Cheng, Z.; Selomulya, C. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering 2016, 169, 189–195. doi:10.1016/j.jfoodeng.2015.08.034.
  • Koç, M.; Koç, B.; Yilmazer, M.S.; Ertekin, F.K.; Susyal, G.; Bağdatlıoğlu, N. Physicochemical characterization of whole egg powder microencapsulated by spray drying. Drying Technology 2011, 29(7), 780–788. doi:10.1080/07373937.2010.538820.
  • Murugesan, R.; Orsat, V. Spray drying of elderberry (Sambucus nigra L.) juice to maintain its phenolic content. Drying Technology 2011, 29(14), 1729–1740. doi:10.1080/07373937.2011.602485.
  • Adamiec, J.; Kalemba, D. Analysis of microencapsulation ability of essential oils during spray drying. Drying Technology 2006, 24(9), 1127–1132. doi:10.1080/07373930600778288.
  • Carneiro, H.C.F.; Tonon, R.V; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering 2013, 115, 443–451. doi:10.1016/j.jfoodeng.2012.03.033.
  • Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. Microencapsulation of gac oil by spray drying: Optimization of wall material concentration and oil load using response surface methodology. Drying Technology 2014, 32(4), 385–397. doi:10.1080/07373937.2013.829854.
  • Bicudo, M.O.P.; Jó, J.; de Oliveira, G.A.; Chaimsohn, F.P.; Sierakowski, M.R.; de Freitas, R.A.; Hoffmann Ribani, R. Microencapsulation of juçara (Euterpe edulis M.) pulp by spray drying using different carriers and drying temperatures. Drying Technology 2015, 33(2), 153–161. doi:10.1080/07373937.2014.937872.
  • Fernandes, L.P.; Turatti, I.C.C.; Lopes, N.P.; Ferreira, J.C.; Candido, R.C.; Oliveira, W.P. Volatile retention and antifungal properties of spray-dried microparticles of Lippia sidoides essential oil. Drying Technology 2008, 26(12), 1534–1542. doi:10.1080/07373930802464034.
  • Bringas-Lantigua, M.; Expósito-Molina, I.; Reineccius, G.A.; López-Hernández, O.; Pino, J.A. Influence of spray-dryer air temperatures on encapsulated mandarin oil. Drying Technology 2011, 29(5), 520–526. doi:10.1080/07373937.2010.513780.
  • Du, J.; Ge, Z.-Z.; Xu, Z.; Zou, B.; Zhang, Y.; Li, C.-M. Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technology 2014, 32(10), 1157–1166. doi:10.1080/07373937.2014.886259.
  • Horuz, E.; Altan, A.; Maskan, M. Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology 2012, 30(7), 787–798. doi:10.1080/07373937.2012.663434.
  • Muzaffar, K.; Kumar, P. Effect of soya protein isolate as a complementary drying aid of maltodextrin on spray drying of tamarind pulp. Drying Technology 2016, 34(1), 142–148. doi:10.1080/07373937.2015.1042586.
  • Li, C.; Wang, J.; Shi, J.; Huang, X.; Peng, Q.; Xue, F. Encapsulation of tomato oleoresin using soy protein isolate-gum aracia conjugates as emulsifier and coating materials. Food Hydrocolloids 2015, 45, 301–308. doi:10.1016/j.foodhyd.2014.11.022.
  • Bertolini, A.C.; Siani, A.C.; Grosso, C.R.F. Stability of monoterpenes encapsulated in gum arabic by spray-drying. Journal of Agricultural and Food Chemistry 2001, 49(2), 780–785. doi:10.1021/jf000436y.
  • Tan, L.H.; Chan, L.W.; Heng, P.W.S. Effect of oil loading on microspheres produced by spray drying. Journal of Microencapsulation 2005, 22(3), 253–259. doi:10.1080/02652040500100329.
  • Hogan, S.A.; O’Riordan, E.D.; O’Sullivan, M. Microencapsulation and oxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation 2003, 20, 675–688. doi:10.3109/02652040309178355.
  • Minemoto, Y.; Hakamata, K.; Adachi, S.; Matsuno, R. Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. Journal of Microencapsulation 2002, 19(2), 181–189. doi:10.1080/02652040110065468.
  • Soottitantawat, A.; Takayama, K.; Okamura, K.; Muranaka, D.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Microencapsulation of L-menthol by spray drying and its release characteristics. Innovative Food Science & Emerging Technologies 2005, 6(2), 163–170 10.1016/j.ifset.2004.11.007.
  • Desai, K.G.H.; Jin Park, H. Recent developments in microencapsulation of food ingredients. Drying Technology 2005, 23(7), 1361–1394. doi:10.1081/DRT-200063478.
  • Barbosa, M.I.M.J.; Borsarelli, C.D.; Mercadante, A.Z. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International 2005, 38(8–9), 989–994. doi:10.1016/j.foodres.2005.02.018.
  • Jafari, S.M.; He, Y.; Bhandari, B. Encapsulation of nanoparticles of D-limonene by spray drying: Role of emulsifiers and emulsifying techniques. Drying Technology 2007, 25(6), 1069–1079. doi:10.1080/07373930701396758.
  • Liu, X.-D.; Atarashi, T.; Furuta, T.; Yoshii, H.; Aishima, S.; Ohkawara, M.; Linko, P. Microencapsulation of emulsified hydrophobic flavors by spray drying. Drying Technology 2001, 19(7), 1361–1374. doi:10.1081/DRT-100105293.
  • Jafari, S.M.; Assadpoor, E.; Bhandari, B.; He, Y. Nano-particle encapsulation of fish oil by spray drying. Food Research International 2008, 41(2), 172–183. doi:10.1016/j.foodres.2007.11.002.
  • Jafari, S.M.; He, Y.; Bhandari, B. Role of powder particle size on the encapsulation efficiency of oils during spray drying. Drying Technology 2007, 25(6), 1081–1089. doi:10.1080/07373930701397343.
  • Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International 2011, 44(1), 282–289. doi:10.1016/j.foodres.2010.10.018.
  • Liu, C.-P.; Liu, S.-D. Low-temperature spray drying for the microencapsulation of the fungus Beauveria bassiana. Drying Technology 2009, 27(6), 747–753. doi:10.1080/07373930902828005.
  • Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A.; Silva, E.K.; da Costa, J.M.G.; Queiroz, F. Microencapsulation of rosemary essential oil: Characterization of particles. Drying Technology 2013, 31(11), 1245–1254. doi:10.1080/07373937.2013.785432.
  • Botrel, D.A.; de Barros Fernandes, R.V.; Borges, S.V.; Yoshida, M.I. Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International 2014, 62, 344–352. doi:10.1016/j.foodres.2014.02.003.
  • Bae, E.K.; Lee, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation 2008, 25(8), 549–560. doi:10.1080/02652040802075682.
  • Hogan, S.A.; McNamee, B.F.; O’Riordan, E.D.; O’Sullivan, M. Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry 2001, 49(4), 1934–1938.
  • Kagami, Y.; Sugimura, S.; Fujishima, N.; Matsuda, K.; Kometani, T.; Matsumura, Y. Oxidative stability, structure, and physical characteristics of microcapsules formed by spray drying of fish oil with protein and dextrin wall materials. Journal of Food Science 2003, 68(7), 2248–2255. doi:10.1111/j.1365-2621.2003.tb05755.x.
  • Kaushik, P.; Dowling, K.; Barrow, C.J.; Adhikari, B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods 2014, 1–14. doi:10.1016/j.jff.2014.06.029.
  • Chen, Q.; Zhong, F.; Wen, J.; McGillivray, D.; Quek, S.Y. Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Drying Technology 2013, 31(6), 707–716. doi:10.1080/07373937.2012.755541.
  • Goyal, A.; Sharma, V.; Sihag, M.K.; Arora, S.; Singh, A.K.; Sabikhi, L. Effect of microencapsulation and spray drying on oxidative stability of flaxseed oil and its release behavior under simulated gastrointestinal conditions. Drying Technology 2015, 34(7), 810–821. doi:10.1080/07373937.2015.1081929.
  • Pu, J.; Bankston, J.D.; Sathivel, S. Production of microencapsulated crawfish (Procambarus clarkii) astaxanthin in oil by spray drying technology. Drying Technology 2011, 29(10), 1150–1160. doi:10.1080/07373937.2011.573155.
  • Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Stathopoulos, C.E. Microencapsulation of gac oil: Optimisation of spray drying conditions using response surface methodology. Powder Technology 2014, 264, 298–309. doi:10.1016/j.powtec.2014.05.053.
  • Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering 2010, 98(3), 385–392. doi:10.1016/j.jfoodeng.2010.01.016.
  • Balasubramani, P.; Palaniswamy, P.T.; Visvanathan, R.; Thirupathi, V.; Subbarayan, A.; Maran, J.P. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules 2015, 72, 210–217. doi:10.1016/j.ijbiomac.2014.08.011.
  • Xue, F.; Li, C.; Liu, Y.; Zhu, X.; Pan, S.; Wang, L. Encapsulation of tomato oleoresin with zein prepared from corn gluten meal. Journal of Food Engineering 2013, 119(3), 439–445. doi:10.1016/j.jfoodeng.2013.06.012.
  • Alves, S.F.; Borges, L.L.; dos Santos, T.O.; de Paula, J.R.; Conceição, E.C.; Bara, M.T.F. Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum arabic and maltodextrin as wall materials: Composition and stability. Drying Technology 2014, 32(1), 96–105. doi:10.1080/07373937.2013.816315.
  • Nayak, C.A.; Rastogi, N.K. Effect of selected additives on microencapsulation of anthocyanin by spray drying. Drying Technology 2010, 28, 1396–1404. doi:10.1080/07373937.2010.482705.
  • Ferrari, C.C.; Marconi Germer, S.P.; Alvim, I.D.; de Aguirre, J.M. Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technology 2013, 31(4), 470–478. doi:10.1080/07373937.2012.742103.
  • de Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 2010, 20(4), 292–302. doi:10.1016/j.idairyj.2009.11.008.
  • Fang, Z.; Bhandari, B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International 2012, 48(2), 478–483. doi:10.1016/j.foodres.2012.05.025.
  • Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology 2015, 62(1), 177–186. doi:10.1016/j.lwt.2015.01.022.
  • Lee, Y.-K.; Ganesan, P.; Baharin, B.S.; Kwak, H.-S. Characteristics, stability, and release of peanut sprout extracts in powdered microcapsules by spray drying. Drying Technology 2015, 33(15–16), 1991–2001. doi:10.1080/07373937.2014.951123.
  • Santiago-Adame, R.; Medina-Torres, L.; Gallegos-Infante, J.A.; Calderas, F.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A.; Bernad-Bernad, M.J. Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology 2015, 64(2), 571–577. doi:10.1016/j.lwt.2015.06.020.
  • Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials 2004, 16(14), 1151–1170. doi:10.1002/adma.200400719.
  • Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science and Technology 2014, 38(1), 21–33. doi:10.1016/j.tifs.2014.03.004.
  • Torres-Giner, S.; Gimenez, E.; Lagaron, J.M. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids 2008, 22(4), 601–614. doi:10.1016/j.foodhyd.2007.02.005.
  • Frenot, A.; Chronakis, I.S. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science 2003, 8(1), 64–75. doi:10.1016/S1359-0294(03)00004-9.
  • Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63(15), 2223–2253. doi:10.1016/S0266-3538(03)00178-7.
  • Enayati, M.; Chang, M.W.; Bragman, F.; Edirisinghe, M.; Stride, E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 382(1–3), 154–164. doi:10.1016/j.colsurfa.2010.11.038.
  • Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. Journal of Electrostatics 2008, 66(3–4), 197–219. doi:10.1016/j.elstat.2007.10.001.
  • Angeles, M.; Cheng, H.-L.; Velankar, S.S. Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polymers for Advanced Technologies 2008, 19(7), 728–733. doi:10.1002/pat.1031.
  • Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate Polymers 2010, 82(2), 227–232. doi:10.1016/j.carbpol.2010.04.074.
  • Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 2010, 28(3), 325–347. doi:10.1016/j.biotechadv.2010.01.004.
  • Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42(1), 261–272. doi:10.1016/S0032-3861(00)00250-0.
  • Liu, Y.; Ma, G.; Fang, D.; Xu, J.; Zhang, H.; Nie, J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydrate Polymers 2011, 83(2), 1011–1015. doi:10.1016/j.carbpol.2010.08.061.
  • Tao, Y.; Zhang, Z.; Sun, D.W. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry 2014, 21, 1461–1469. doi:10.1016/j.ultsonch.2014.01.029.
  • Therona, S.A.; Zussmana, E.; Yarin, A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45(3), 2017–2030. doi:10.1016/j.polymer.2004.01.024.
  • Yao, C.; Li, X.; Song, T. Electrospinning and crosslinking of zein nanofiber mats. Journal of Applied Polymer Science 2007, 103(1), 380–385. doi:10.1002/app.24619.
  • Kriegel, C.; Kit, K.A.; McClements, D.J.; Weiss, J. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: Fabrication and characterization. Langmuir 2009, 25(2), 1154–1161. doi:10.1021/La803058c.
  • Vega-Lugo, A.-C.; Lim, L.-T. Electrospinning of soy protein isolate nanofibers. Journal of Biobased Materials and Bioenergy 2008, 2(3), 223–230. doi:10.1166/jbmb.2008.408.
  • Neo, Y.P.; Ray, S.; Easteal, A.J.; Nikolaidis, M.G.; Quek, S.Y. Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. Journal of Food Engineering 2012, 109(4), 645–651. doi:10.1016/j.jfoodeng.2011.11.032.
  • Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of zein-based heat-management structures for smart food packaging. Food Hydrocolloids 2013, 30(1), 182–191. doi:10.1016/j.foodhyd.2012.05.010.
  • Jia, Y.-T.; Gong, J.; Gu, X.-H.; Kim, H.-Y.; Dong, J.; Shen, X.-Y. Fabrication and characterization of poly(vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate Polymers 2007, 67(3), 403–409. doi:10.1016/j.carbpol.2006.06.010.
  • Geng, X.; Kwon, O.H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26(27), 5427–5432. doi:10.1016/j.biomaterials.2005.01.066.
  • Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 2014, 39, 19–26. doi:10.1016/j.foodhyd.2013.12.022.
  • Wang, S.; He, J.; Xu, L. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers. Polymer International 2008, 1082, 1079–1082. doi:10.1002/pi.
  • Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release 2003, 92(3), 227–231. doi:10.1016/S0168-3659(03)00372-9.
  • Ziani, K.; Henrist, C.; Jérôme, C.; Aqil, A.; Maté, J.I.; Cloots, R. Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydrate Polymers 2011, 83(2), 470–476. doi:10.1016/j.carbpol.2010.08.002.
  • Heikkilä, P.; Harlin, A. Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process. Express Polymer Letters 2009, 3(7), 437–445. doi:10.3144/expresspolymlett.2009.53.
  • Tan, S.H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46(16), 6128–6134. doi:10.1016/j.polymer.2005.05.068.
  • Li, L.; Hsieh, Y.-Lo. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid). Polymer 2005, 46(14), 5133–5139. doi:10.1016/j.polymer.2005.04.039.
  • Uyar, T.; Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer 2008, 49(24), 5336–5343. doi:10.1016/j.polymer.2008.09.025.
  • Manandhar, S.; Vidhate, S.; D’Souza, N. Water soluble levan polysaccharide biopolymer electrospun fibers. Carbohydrate Polymers 2009, 78(4), 794–798. doi:10.1016/j.carbpol.2009.06.023.
  • Sencadas, V.; Correia, D.M.; Areias, A.; Botelho, G.; Fonseca, A.M.; Neves, I.C.; Gomez Ribelles, J.L.; Lanceros Mendez, S. Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers 2012, 87(2), 1295–1301 10.1016/j.carbpol.2011.09.017.
  • Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer 2002, 43(11), 3303–3309. doi:10.1016/S0032-3861(02)00136-2.
  • Neo, Y.P.; Ray, S.; Easteal, A.J.; Nikolaidis, M.G.; Quek, S.Y. Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. Journal of Food Engineering 2012, 109(4), 645–651. doi:10.1016/j.jfoodeng.2011.11.032.
  • Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17(14), R89–R106. doi:10.1088/0957-4484/17/14/R01.
  • Ribeiro, C.; Sencadas, V.; Ribelles, J.L.G.; Lanceros-Méndez, S. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Materials 2010, 8(3), 274–287. doi:10.1080/1539445X.2010.495630.
  • Henriques, C.; Vidinha, R.; Botequim, D.; Borges, J.P.; Silva, J.A.M.C. A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. Journal of Nanoscience and Nanotechnology 2009, 9(6), 3535–3545. doi:10.1166/jnn.2008.BBE55.
  • Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. Electrospinning process. An Introduction to Electrospinning and Nanofibers; World Scientific Publishing: Singapore 2005; 135–137.
  • Wang, M.; Tong, H.W. Effects of processing parameters on the morphology and size of electrospun PHBV micro- and nano-fibers. Key Engineering Materials 2007, 334–335, 1233–1236. doi:10.4028/www.scientific.net/KEM.334-335.1233.
  • Lee, J.S.; Choi, K.H.; Do Ghim, H.; Kim, S.S.; Chun, D.H.; Kim, H.Y.; Lyoo, W.S. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science 2004, 93(4), 1638–1646. doi:10.1002/app.20602.
  • Tripatanasuwan, S.; Zhong, Z.; Reneker, D.H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer 2007, 48(19), 5742–5746. doi:10.1016/j.polymer.2007.07.045.
  • Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of polymers with therapeutic molecules: State of the art. Progress in Polymer Science 2012, 37(11), 1510–1551. doi:10.1016/j.progpolymsci.2012.03.002.
  • Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29(13), 1989–2006. doi:10.1016/j.biomaterials.2008.01.011.
  • Li, Y.; Lim, L.-T.; Kakuda, Y. Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. Journal of Food Science 2009, 74(3), C233–C240. doi:10.1111/j.1750-3841.2009.01093.x.
  • Xie, J.; Lim, L.K.; Phua, Y.; Hua, J.; Wang, C.H. Electrohydrodynamic atomization for biodegradable polymeric particle production. Journal of Colloid and Interface Science 2006, 302(1), 103–112. doi:10.1016/j.jcis.2006.06.037.
  • Ghayempour, S.; Mortazavi, S.M. Fabrication of micro-nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics 2013, 71(4), 717–727. doi:10.1016/j.elstat.2013.04.001.
  • Zhang, S.; Kawakami, K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics 2010, 397(1–2), 211–217. doi:10.1016/j.ijpharm.2010.07.007.
  • Wu, Y.; Mackay, J.A.; Mcdaniel, J.R.; Chilkoti, A.; Clark, R.L. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules 2009, 10(1), 19–24. doi:10.1021/bm801033f.
  • Ghaeb, M.; Tavanai, H.; Kadivar, M. Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polymers for Advanced Technologies 2015, 26(8), 917–923. doi:10.1002/pat.3501.
  • Kim, H.H.; Kim, J.H.; Ogata, A. Time-resolved high-speed camera observation of electrospray. Journal of Aerosol Science 2011, 42(4), 249–263. doi:10.1016/j.jaerosci.2011.01.007.
  • Bock, N.; Woodruff, M.A.; Hutmacher, D.W.; Dargaville, T.R. Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 2011, 3(1), 131–149. doi:10.3390/polym3010131.
  • Gañán-Calvo, A.M.; Dávila, J.; Barrero, A. Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science 1997, 28(2), 249–275. doi:10.1016/S0021-8502(96)00433-8.
  • Felice, B.; Prabhakaran, M.P.; Zamani, M.; Rodríguez, A.P.; Ramakrishna, S. Electrosprayed poly(vinyl alcohol) particles: preparation and evaluation of their drug release profile. Polymer International 2015, 64(12), 1722–1732. doi:10.1002/pi.4972.
  • Zhang, S.; Kawakami, K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics 2010, 397(1–2), 211–217. doi:10.1016/j.ijpharm.2010.07.007.
  • Prabhakaran, M.P.; Zamani, M.; Felice, B.; Ramakrishna, S. Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile. Materials Science and Engineering: C 2015, 56, 66–73. doi:10.1016/j.msec.2015.06.018.
  • Meng, F.; Jiang, Y.; Sun, Z.; Yin, Y.; Li, Y. Electrohydrodynamic liquid atomization of biodegradable polymer microparticles: Effect of electrohydrodynamic liquid atomization variables on microparticles. Journal of Applied Polymer Science 2009, 113(1), 526–534. doi:10.1002/app.30107.
  • Yao, J.; Kuang Lim, L.; Xie, J.; Hua, J.; Wang, C.H. Characterization of electrospraying process for polymeric particle fabrication. Journal of Aerosol Science 2008, 39(11), 987–1002. doi:10.1016/j.jaerosci.2008.07.003.
  • Hong, Y.; Li, Y.; Yin, Y.; Li, D.; Zou, G. Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. Journal of Aerosol Science 2008, 39(6), 525–536. doi:10.1016/j.jaerosci.2008.02.004.
  • Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 2005, 46(10), 3372–3384. doi:10.1016/j.polymer.2005.03.011.
  • Ghaeb, M.; Tavanai, H.; Kadivar, M. Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polymers for Advanced Technologies 2015, 26(8), 917–923. doi:10.1002/pat.3501.
  • Shalumon, K.T.; Binulal, N.S.; Selvamurugan, N.; Nair, S.V.; Menon, D.; Furuike, T.; Tamura, H.; Jayakumar, R. Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers 2009, 77(4), 863–869. doi:10.1016/j.carbpol.2009.03.009.
  • Ramakrishna, S.; Fujihara, K.; Ganesh, V.K.; Teo, W.E.; Lim, T.C. Science and engineering of polymer nanofibers. In Functional Nanomaterials; Geckeler K.E. and Rosenberg E. Eds.; American Scientific Publisher: Valencia 2005.
  • Kriegel, C.; Kit, K.M.; McClements, D.J.; Weiss, J. Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 2009, 50(1), 189–200. doi:10.1016/j.polymer.2008.09.041.
  • Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science and Technology 2014, 38(1), 21–33. doi:10.1016/j.tifs.2014.03.004.
  • Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005, 26(31), 6176–6184. doi:10.1016/j.biomaterials.2005.03.027.
  • Park, W.H.; Jeong, L.; Yoo, D. Il; Hudson, S. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 2004, 45(21), 7151–7157. doi:10.1016/j.polymer.2004.08.045.
  • Shen, W.; Hsieh, Y.-L. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydrate Polymers 2014, 102, 893–900. doi:10.1016/j.carbpol.2013.10.066.
  • Islam, M.S.; Karim, M.R. Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 366(1–3), 135–140. doi:10.1016/j.colsurfa.2010.05.038.
  • Safi, S.; Morshed, M.; Ravandi, S.A.H.; Ghiaci, M. Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide). Journal of Applied Polymer Science 2007, 104, 3245–3255. doi:10.1002/app.
  • Ma, G.; Fang, D.; Liu, Y.; Zhu, X.; Nie, J. Electrospun sodium alginate/poly(ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydrate Polymers 2012, 87(1), 737–743. doi:10.1016/j.carbpol.2011.08.055.
  • Nie, H.; He, A.; Wu, W.; Zheng, J.; Xu, S.; Li, J.; Han, C.C. Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate. Polymer 2009, 50(20), 4926–4934. doi:10.1016/j.polymer.2009.07.043.
  • Huang, L.; Nagapudi, K.; Apkarian, R.P.; Chaikof, E.L. Engineered collagen-PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition 2001, 12, 979–993. 10.1163/156856201753252516.
  • Honarkar, H.; Barikani, M. Applications of biopolymers I: Chitosan. Monatshefte fur Chemie 2009, 140(12), 1403–1420. doi:10.1007/s00706-009-0197-4.
  • Harish Prashanth, K.V.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends in Food Science and Technology 2007, 18(3), 117–131. doi:10.1016/j.tifs.2006.10.022.
  • Torres-Giner, S.; Ocio, M.J.; Lagaron, J.M. Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydrate Polymers 2009, 77(2), 261–266. doi:10.1016/j.carbpol.2008.12.035.
  • Aceituno-Medina, M.; Mendoza, S.; Lagaron, J.M.; López-Rubio, A. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food Research International 2013, 54(1), 667–674. doi:10.1016/j.foodres.2013.07.055.
  • Yao, C.; Li, X.; Song, T. Fabrication of zein/hyaluronic acid fibrous membranes by electrospinning. Journal of Biomaterials Science, Polymer Edition 2007, 18, 731–742. doi:10.1163/156856207781034070.
  • Nagarajan, R.; Drew, C.; Mello, C.M. Polymer-micelle complex as an aid to electrospinning nanofibers from aqueous solutions. Journal of Physical Chemistry C 2007, 111(44), 16105–16108. doi:10.1021/jp077421o.
  • Stijnman, A.C.; Bodnar, I.; Hans Tromp, R. Electrospinning of food-grade polysaccharides. Food Hydrocolloids 2011, 25(5), 1393–1398. doi:10.1016/j.foodhyd.2011.01.005.
  • Pérez-Masiá, R.; Lagaron, J.M.; López-Rubio, A. Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food and Bioprocess Technology 2014, 7, 3236–3245. doi:10.1007/s11947-014-1304-z.
  • Perez-Masia, R.; Lagaron, J.M.; Lopez-Rubio, A. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. Carbohydrate Polymers 2014, 101(1), 249–255. doi:10.1016/j.carbpol.2013.09.032.
  • Lesmes, U.; McClements, D.J. Structure-function relationships to guide rational design and fabrication of particulate food delivery systems. Trends in Food Science and Technology 2009, 20(10), 448–457. doi:10.1016/j.tifs.2009.05.006.
  • López-Rubio, A.; Sanchez, E.; Wilkanowicz, S.; Sanz, Y.; Lagaron, J.M. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids 2012, 28(1), 159–167. doi:10.1016/j.foodhyd.2011.12.008.
  • Sozer, N.; Kokini, J.L. Nanotechnology and its applications in the food sector. Trends in Biotechnology 2009, 27(2), 82–89. doi:10.1016/j.tibtech.2008.10.010.
  • Sanchez-Garcia, M.D.; Lopez-Rubio, A.; Lagaron, J.M. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science and Technology 2010, 21(11), 528–536. doi:10.1016/j.tifs.2010.07.008.
  • Lagaron, J.M.; Lopez-Rubio, A. Nanotechnology for bioplastics: Opportunities, challenges and strategies. Trends in Food Science and Technology 2011, 22(11), 611–617. doi:10.1016/j.tifs.2011.01.007.
  • Saeed, K.; Park, S.-Y. Preparation and characterization of multiwalled carbon nanotubes/polyacrylonitrile nanofibers. Journal of Polymer Research 2010, 17(4), 535–540. doi:10.1007/s10965-009-9341-4.
  • Thompson, C.J.; Chase, G.G.; Yarin, A.L.; Reneker, D.H. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48(23), 6913–6922. doi:10.1016/j.polymer.2007.09.017.
  • Kayaci, F.; Uyar, T. Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry 2012, 133(3), 641–649. doi:10.1016/j.foodchem.2012.01.040.
  • Mascheroni, E.; Fuenmayor, C.A.; Cosio, M.S.; Di Silvestro, G.; Piergiovanni, L.; Mannino, S.; Schiraldi, A. Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydrate Polymers 2013, 98(1), 17–25 10.1016/j.carbpol.2013.04.068.
  • Aceituno-Medina, M.; Mendoza, S.; Lagaron, J.M.; López-Rubio, A. Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate—Pullulan electrospun fibers. LWT - Food Science and Technology 2015, 62(2), 970–975. doi:10.1016/j.lwt.2015.02.025.
  • Aceituno-Medina, M.; Mendoza, S.; Rodríguez, B.A.; Lagaron, J.M.; López-Rubio, A. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods 2015, 12, 332–341. doi:10.1016/j.jff.2014.11.028.
  • Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Industrial Crops and Products 2001, 13(3), 171–192. doi:10.1016/S0926-6690(00)00064-9.
  • Fernandez, A.; Torres-Giner, S.; Lagaron, J.M. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 2009, 23(5), 1427–1432. doi:10.1016/j.foodhyd.2008.10.011.
  • Neo, Y.P.; Ray, S.; Jin, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M.K.; Liu, D.; Quek, S.Y. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein-gallic acid system. Food Chemistry 2013, 136(2), 1013–1021. doi:10.1016/j.foodchem.2012.09.010.
  • Moomand, K.; Lim, L.T. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Research International 2014, 62, 523–532. doi:10.1016/j.foodres.2014.03.054.
  • Vega-Lugo, A.C.; Lim, L.T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International 2009, 42(8), 933–940. doi:10.1016/j.foodres.2009.05.005.
  • Valo, H.; Peltonen, L.; Vehviläinen, S.; Karjalainen, M.; Kostiainen, R.; Laaksonen, T.; Hirvonen, J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small 2009, 5(15), 1791–1798. doi:10.1002/smll.200801907.
  • Jones, O.; Decker, E.A.; McClements, D.J. Thermal analysis of beta-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids 2010, 24(2–3), 239–248. doi:10.1016/j.foodhyd.2009.10.001.
  • Gómez-Estaca, J.; Gavara, R.; Hernández-Muñoz, P. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies 2015, 29, 302–307. doi:10.1016/j.ifset.2015.03.004.
  • Pérez-Masiá, R.; Lagaron, J.M.; Lopez-Rubio, A. Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology 2014, 8(2), 459–470 10.1007/s11947-014-1422-7.
  • Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. Journal of Food Science 2010, 75(6), N69–N79. doi:10.1111/j.1750-3841.2010.01678.x.
  • Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of Colloid and Interface Science 2015, 465, 259–270. doi:10.1016/j.jcis.2015.11.061.
  • de Freitas Zômpero, R.H.; López-Rubio, A.; de Pinho, S.C.; Lagaron, J.M.; de la Torre, L.G. Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces 2015, 134, 475–482. doi:10.1016/j.colsurfb.2015.03.015.
  • Vega-Lugo, A.C.; Lim, L.T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International 2009, 42(8), 933–940. doi:10.1016/j.foodres.2009.05.005.
  • Rieger, K.A.; Schiffman, J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydrate Polymers 2014, 113, 561–568. doi:10.1016/j.carbpol.2014.06.075.
  • Brahatheeswaran, D.; Mathew, A.; Aswathy, R.G.; Nagaoka, Y.; Venugopal, K.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials 2012, 7(4), 045001 10.1088/1748-6041/7/4/045001.
  • Wu, X.M.; Branford-White, C.J.; Yu, D.G.; Chatterton, N.P.; Zhu, L.M. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids and Surfaces B: Biointerfaces 2011, 82(1), 247–252. doi:10.1016/j.colsurfb.2010.08.049.
  • Fuenmayora, C.A.; Mascheronia, E.; Cosioa, M.S.; Piergiovannia, L.; Benedettia, S.; Ortenzic, M.; et al. Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chemical Engineering 2013, 32.
  • Zamani, M.; Prabhakaran, M.P.; Thian, E.S.; Ramakrishna, S. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables. International Journal of Pharmaceutics 2014, 473(1–2), 134–143. doi:10.1016/j.ijpharm.2014.07.006.
  • Gómez-Estaca, J.; Gavara, R.; Hernández-Muñoz, P. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies 2015, 29, 302–307. doi:10.1016/j.ifset.2015.03.004.
  • Eltayeb, M.; Stride, E.; Edirisinghe, M. Preparation, characterization and release kinetics of ethylcellulose nanoparticles encapsulating ethylvanillin as a model functional component. Journal of Functional Foods 2015, 14, 726–735. doi:10.1016/j.jff.2015.02.036.
  • Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry 2015, 168, 124–133. doi:10.1016/j.foodchem.2014.07.051.
  • Eltayeb, M.; Bakhshi, P.K.; Stride, E.; Edirisinghe, M. Preparation of solid lipid nanoparticles containing active compound by electrohydrodynamic spraying. Food Research International 2013, 53(1), 88–95. doi:10.1016/j.foodres.2013.03.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.