Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 7
330
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of moisture absorption and dimensional stability of Chinese cedar wood with conventional drying and superheated steam drying

&

References

  • Zhao, X.Y.; Zheng, Z.W.; Shang, Z.Y.; Wang, J.; Cheng, R.Q.; Qian, J.L. Climatic information recorded in stable carbon isotopes in tree rings of Cryptomeria fortunei, Tianmu Mountain, China. Dendrochronologia 2014, 32(3), 256–265.
  • Xie, Y.J.; Huang, Q.Y.; Yang, F.L.; Lei, C.L. Chemical variation in essential oil of Cryptomeria fortunei from various areas of China. Industrial Crops and Products 2012, 36(1), 308–312.
  • Obataya, E.; Shibutani, S.; Hanata, K.; Dio, S. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) I: Changes in hygroscopicity due to heating. Journal of Wood Science 2006, 52(1), 33–38.
  • Obataya, E.; Shibutani, S.; Hanata, K.; Dio, S. Effects of high temperature kiln drying on the practical performances of Japanese cedar wood (Cryptomeria japonica) II: Changes in mechanical properties due to heating. Journal of Wood Science 2006, 52(2), 111–114.
  • Li, X.L.; Kobayashi, I.; Kuroda, N.; Gao, R.Q. Study on RF/V drying and check preventing for Japanese sugi. Scientia Silvae Sinicae 2005, 2(2), 106–111.
  • Hermawan, A.; Fujimoto, N.; Sakagami, H. A study of vacuum-drying characteristics of sugi boxed-heart timber. Drying Technology 2013, 31(5), 587–594.
  • Yamashita, K.; Hirakawa, Y.; Saito, S.; Nakatani, H.; Ikeda, M.; Ohta, M.M. Effect of cross-sectional dimensions on bow and surface checking of sugi (Cryptomeria japonica) boxed-heart square timber dried by conventional kiln drying. Journal of Wood Science 2014, 60(1), 1–11.
  • Zhu, J.J.; Tadooka, N.; Takata, K.; Koizumi, A. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. Journal of Wood Science 2005, 51(2), 95–101.
  • Gao, L.X.; Zhou, Y.D.; Gao, R.Q.; Li, X.L. High temperature drying of Cryptomeria lumber. China Wood Industry 2014, 28(5), 16–19 (in Chinese).
  • Taghiyari, H.R.; Habibzade, S.; Miri Tari, S.M. Effects of wood drying schedules on fluid flow in Paulownia wood. Drying Technology 2013, 32(1), 89–95.
  • Pang, S.S.; Pearson, H. Experimental investigation and practical application of superheated steam drying technology for softwood timber. Drying Technology 2004, 22(9), 2079–2094.
  • Ratnasingam, J.; Grohmann, R. Superheated steam application to optimize the kiln drying of rubberwood (Hevea brasiliensis). European Journal of Wood and Wood Products 2015, 73(3), 407–409.
  • Elustondo, D.; Ahmed, S.; Oliveira, L. Drying western red cedar with superheated steam. Drying Technology 2014, 32(5), 550–556.
  • Li, Y.B.; Seyed-Yagoobi, J.; Moreira, R.G.; Yamsaengsung, R. Superheated steam impingement drying of tortilla chips. Drying Technology 1999, 17(1), 191–213.
  • Deventer, H.C.; Heijmans, R.M.H. Drying with superheated steam. Drying Technology 2001, 19(8), 2033–2045.
  • Mujumdar, A.S.; Law, C.L. Drying technology: Trends and applications in postharvest processing. Food and Bioprocess Technology 2010, 3(6), 843–852.
  • Zhu, J.L.; Wang, Q.L.; Lu, X.L. Status and developments of drying low rank coal with superheated steam in China. Drying Technology 2015, 33(9), 1086–1100.
  • Yamsaengsung, R.; Tabtiang, S. Hybrid drying of rubberwood using superheated steam and hot air in a pilot-scale. Drying Technology 2011, 29(10), 1170–1178.
  • Haque, M.N.; Sargent, R. Standard and superheated steam schedules for radiata pine single-board drying: model prediction and actual measurements. Drying Technology 2008, 26(2), 186–191.
  • Zhou, Y.D. Study on drying characteristics and mechanism of poplar lumber strengthened with low molecular weight phenol-formaldehyde resin. Ph.D. thesis. Chinese academy of Forestry, Beijing, China, 2009.
  • Edvardsen, K.; Sandland, K.M. Increased drying temperature – Its influence on the dimensional stability of wood. Holz als Roh- und Werkstoff 1999, 57(3), 207–209.
  • Jiang, J.L.; Lu, J.X.; Huang, R.F.; Li, X.L. Effects of time and temperature on the viscoelastic properties of Chinese fir wood. Drying Technology 2009, 27(11), 1229–1234.
  • Sik, H.S.; Choo, K.T.; Zakaria, S.; Ahmad, S.; How, S.S.; Chia, C.H.; Yusoff, M. Dimensional stability of high temperature-dried rubberwood solid lumber at two equilibrium moisture content conditions. Drying Technology 2010, 28(9), 1083–1090.
  • Rayirath, P.; Avramidis, S.; Mansfield, S. The effect of wood drying on crystallinity and microfibril angle in black spruce (Picea mariana). Journal of Wood Chemistry and Technology 2008, 28(3), 167–179.
  • GB/T 1931–2009. Method for determination of the moisture content of wood. Chinese National Standardization Management Committee, China.
  • GB/T 1934.2–2009. Method for determination of the swelling of wood. Chinese National Standardization Management Committee, China.
  • Zhu, Y.; Wang, W.; Cao, J.Z. Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid. Bioresources 2014, 9(2), 2431–2445.
  • Jiang, J.L.; Lu, J.X. Dynamic viscoelasticity of wood after various drying processes. Drying Technology 2008, 26(5), 537–543.
  • Segal, L.C.; Creely, J.; Martin, A.E.J.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 1959, 29(10), 786–794.
  • Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure 2011, 988(1–3), 65–72.
  • Ahmed, S.A.; Moren, T. Moisture properties of heat-treated scots pine and Norway spruce sapwood impregnated with wood preservatives. Wood and Fiber Science 2012, 44(1), 85–93.
  • Poncsák, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 2006, 40(8), 647–663.
  • Qi, H.C.; Sun, Y.X. Effect of high temperature and steam on dimensional stability of wood. Applied Mechanics & Materials 2014, 513–517(1), 151–155.
  • Choong, E.T.; Mackay, J.F.G.; Stewart, C.M. Collapse and moisture flow in kiln-drying and freeze-drying of specimens. Wood Science 1973, 6(2), 127–135.
  • Rautkari, L.; Hill, C.A.S. Effect of initial moisture content on the anti-swelling efficiency of thermally modified Scots pine sapwood treated in a high-pressure reactor under saturated steam. Holzforschung 2014, 68(3), 323–326.
  • Zhan, T.Y.; Jiang, J.L.; Lu, J.X. The viscoelastic properties of Chinese fir during water-loss process under hydrothermal conditions. Drying Technology 2015, 33(14), 1739–1745.
  • Nakano, T.; Honma, S.; Matsumoto, A.Physical properties of chemically-modified wood containing metal I. Effects of metals on dynamic mechanical properties of half-esterified wood. Mokuzai Gakkaishi 1990, 36(12), 1063–1068.
  • Kelly, S.S.; Rial, T.G.; Glasser, W.G. Relaxation behaviour of the amorphous components of wood. Journal of Material Science 1987, 22(5), 617–624.
  • Jiang, J.L.; Lu, J.X.; Zhao, Y.K.; Wu, Y.Z. Influence of frequency on wood viscoelasticity under two types of heating conditions. Drying Technology 2010, 28(6), 823–829.
  • Backman, A.C.; Lindberg, K.A.H. Differences in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis. Journal of Materials Science 2001, 36(15), 3777–3783.
  • Bowyer, J.L.; Shmulsky, R.; Haygreen, J.G. Forest Products and Wood Science; Iowa State Press: Ames, Iowa, USA, 2003.
  • Wada, M.; Okano, T.; Sugiyama, J. Allomorphs of native crystalline cellulose I. Evaluated by two equatorial d-spacings. Journal of Wood Science 2001, 47(2), 124–128.
  • Kim, D.Y.; Nishiyama, Y.; Wada, M.; Kuga, S.; Okano, T. Thermal decomposition of cellulose crystallites in wood. Holzforschung 2001, 55(5), 521–524.
  • Sun, W.L.; Li, J. Analysis and characterization of dimensional stability and crystallinity of heat-treated Larix spp. Scientia Silvae Sinicae 2010, 46(12), 114–118 (in Chinese).
  • Zhang, S.C.; Qi H.C.; Liu Y.X.; Cheng, W.L. Impact on timber crystallization performance of superheated steam-treated wood under high temperature and pressure. Journal of Nanjing Forestry University 2010, 34(5), 164–166 (in Chinese).
  • Kim, U.J.; Eom, S.H.; Wada, M. Thermal decomposition of native cellulose: influence on crystallite size. Polymer Degradation and Stability 2010, 95(5), 778–781.
  • Islam, M.S.; Hamdan, S.; Jusoh, I.; Rahman, M.R.; Talib, Z.A. Dimensional stability and dynamic young’s modulus of tropical light hardwood chemically treated with methyl methacrylate in combination with hexamethylene diisocyanate cross-linker. Industrial and Engineering Chemistry Research 2011, 50(7), 3900–3906.
  • Wickholm, K.; Larsson, P.T.; Iversen, T. Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydrate Research 1998, 312(3), 123–129.
  • Poletto, M.; Zattera, A.J.; Forte M.M.C.; Santana, R.M.C. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 2012, 109(4), 148–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.