Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 9
1,261
Views
47
CrossRef citations to date
0
Altmetric
ARTICLES

Effects of drying conditions on physicochemical and antioxidant properties of banana (Musa cavendish) peels

, &

References

  • FAOSTAT. FAO Statistical Database (FAOSTAT). Available at: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (access May 17, 2016).
  • Carvalho, G.B.; Silva, D.P.; Bento, C.V.; Vicente, A.A.; Teixeira, J.A.; Maria das Graças, A.F.; e Silva, J.B.A. Banana as adjunct in beer production: Applicability and performance of fermentative parameters. Applied Biochemistry and Biotechnology 2009, 155, 53–62.
  • Wachirasiri, P.; Julakarangka, S.; Wanlapa, S. The effects of banana peel preparations on the properties of banana peel dietary fibre concentrate. Songklanakarin Journal of Science and Technology 2009, 31, 605–611.
  • Rebello, L.P.G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Research International 2014, 55, 397–403.
  • Ji, L.; Srzednicki, G. Extraction of aromatic compounds from banana peels. Acta Horticulturae 2015, 1088, 541–546.
  • González-Montelongo, R.; Gloria Lobo, M.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry 2010, 119, 1030–1039.
  • Pereira, A.; Maraschin, M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology 2015, 160, 149–163.
  • Lee, E.-H.; Yeom, H.-J.; Ha, M.-S.; Bae, D.-H. Development of banana peel jelly and its antioxidant and textural properties. Food Science and Biotechnology 2010, 19, 449–455.
  • Fidrianny, I.; Kiki Rizki, R.; Insanu, M. In vitro antioxidant activities from various extracts of banana peels using ABTS, DPPH assays and correlation with phenolic, flavonoid, carotenoid content. International Journal of Pharmacy and Pharmaceutical Sciences 2014, 6, 299–303.
  • Vijayakumar, S.; Presannakumar, G.; Vijayalakshmi, N.R. Antioxidant activity of banana flavonoids. Fitoterapia 2008, 79, 279–282.
  • Chabuck, Z.A.G.; Al-Charrakh, A.H.; Hindi, N.K.K.; Hindi, S.K.K. Antimicrobial effect of aqueous banana peel extract, Iraq. Research Gate Pharmaceutical Science 2013, 1, 73–75.
  • Oliveira, M.d.S.; Furlong, E.B. Screening of antifungal and antimycotoxigenic activity of plant phenolic extracts. World Mycotoxin Journal 2008, 1, 139–146.
  • Nguyen, V.T.; Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Phytochemical retention and antioxidant capacity of xao tam phan (Paramignya trimera) root as prepared by different drying methods. Drying Technology 2016, 43, 324–334.
  • Nguyen, V.T.; van Vuong, Q.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology 2015, 33, 1006–1017.
  • Nindo, C.I.; Sun, T.; Wang, S.W.; Tang, J.; Powers, J.R. Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis L.). LWT - Food Science and Technology 2003, 36, 507–516.
  • Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry 2009, 57, 1337–1343.
  • Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology 2012, 6, 806–817.
  • Vuong, Q.V.; Zammit, N.; Munro, B.R.; Murchie, S.; Bowyer, M.C.; Scarlett, C.J. Effect of drying conditions on physicochemical and antioxidant properties of Vitex agnus-castus leaves. Journal of Food Processing and Preservation 2015, 39, 2562–2571.
  • Erbay, Z.; Icier, F. Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Drying Technology 2009, 27, 416–427.
  • Therdthai, N.; Zhou, W. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering 2009, 91, 482–489.
  • Prabhanjan, D.G.; Ramaswamy, H.S.; Raghavan, G.S.V. Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering 1995, 25, 283–293.
  • Hirun, S.; Choi, J.-H.; Ayarungsaritkul, J.; Pawsaut, C.; Sutthiwanjampa, C.; Vuong, Q.V.; Chockchaisawasdee, S.; Heo, Y.-R.; Scarlett, C.J. Optimization of far-infrared vacuum drying conditions for miang leaves (Camellia sinensis var. Assamica) using response surface methodology. Food Science and Biotechnology 2015, 24, 461–469.
  • Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry 2005, 93, 223–226.
  • Oliveira, S.M.; Ramos, I.N.; Brandão, T.R.S.; Silva, C.L.M. Effect of air-drying temperature on the quality and bioactive characteristics of dried Galega kale (Brassica oleracea L. var. Acephala). Journal of Food Processing and Preservation 2015, 39, 2485–2496.
  • Krokida, M.K.; Maroulis, Z.B. Effect of microwave drying on some quality properties of dehydrated products. Drying Technology 1999, 17, 449–466.
  • Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. Journal of Herbal Medicine 2013, 3, 104–111.
  • Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 2006, 19, 669–675.
  • Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of Neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 2004, 52, 7970–7981.
  • Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry 2009, 113, 166–172.
  • Leistner, L. Food preservation by combined methods. Food Research International 1992, 25, 151–158.
  • Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology 2013, 7, 829–841.
  • Pham, H.; Nguyen, V.; Vuong, Q.; Bowyer, M.; Scarlett, C. Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies 2015, 3, 285–301.
  • Sagar, V.; Kumar, P.S. Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology 2010, 47, 15–26.
  • Garau, M.C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of air-drying temperature on physico-chemical properties of dietary fiber and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry 2007, 104, 1014–1024.
  • Asami, D.K.; Hong, Y.-J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry 2003, 51, 1237–1241.
  • Mueller-Harvey, I. Analysis of hydrolysable tannins. Animal Feed Science and Technology 2001, 91, 3–20.
  • Mujumdar, A.S.; Law, C.L. Drying technology: Trends and applications in postharvest processing. Food and Bioprocess Technology 2010, 3, 843–852.
  • Inazu, T.; Iwasaki, K.-I.; Furuta, T. Effect of temperature and relative humidity on drying kinetics of fresh Japanese noodle (Udon). LWT - Food Science and Technology 2002, 35, 649–655.
  • Ong, S.P.; Law, C.L.; Hii, C.L. Optimization of heat pump–assisted intermittent drying. Drying Technology 2012, 30, 1676–1687.
  • Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chemistry 2009, 117, 647–653.
  • Miranda, M.; Maureira, H.; Rodríguez, K.; Vega-Gálvez, A. Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. Journal of Food Engineering 2009, 91, 297–304.
  • Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT - Food Science and Technology 2007, 40, 1664–1669.
  • Inchuen, S.; Narkrugsa, W.; Pornchaloempong, P. Effect of drying methods on chemical composition, color and antioxidant properties of Thai red curry powder. Kasetsart Journal of Natural Science 2010, 44, 142–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.